Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Understanding insulation failure of nanodielectrics: tailoring carrier energy

Owing to the formation of interface and new feature of which, the properties of nanodielectrics can be improved. ‘Hard/soft interface’ and its trap distribution can be tailored by functionalised groups. Molecular simulation results show that the interaction energy and electrostatic potential are larger for the soft interface, which indicates the greater bonding strength with the polymer matrix and electrostatic force on charge carriers. Charge transport simulation indicates that the accumulation of homo-charges would form a reverse electric field and distort electric field distribution. The injection depth would be restricted at the vicinity of sample/electrodes due to the greater trapping effect of deep traps, thus weakening the distortion in the sample bulk, thereby decreasing carrier energy and delaying the formation of impact ionisation. Based on the accumulation of carrier energy Φ = Eeλ, the idea of suppressing electron free path and carrier energy to enhance the insulation breakdown is confirmed. The classified effects of nanofillers during dc breakdown and corona-resistant are further understood from carrier energy. The introduced interfacial trap is effective in trapping carriers due to the low carrier energy under dc voltage, while ineffective in blocking the energetic charges during corona-discharge, but nanoparticles exert blocking and scattering effect against the energetic charges.

References

    1. 1)
      • 37. Zhou, Y., Hu, J., Dang, B., et al: ‘Titanium oxide nanoparticle increases shallow traps to suppress space charge accumulation in polypropylene dielectrics’, Rsc. Adv., 2016, 6, (54), pp. 4872048727.
    2. 2)
      • 23. Li, J., Zhou, F., Min, D., et al: ‘The energy distribution of trapped charges in polymers based on isothermal surface potential decay model’, IEEE Trans. Dielectr. Electr. Insul., 2015, 3, (22), pp. 17231732.
    3. 3)
      • 30. Yang, X., Hu, J., Chen, S., et al: ‘Understanding the percolation characteristics of nonlinear composite dielectrics’, Sci. Rep., 2016, 6, p. 30597.
    4. 4)
      • 40. Hagelaar, G.J. M., Pitchford, L.C.: ‘Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models’, Plasma Sources Sci. T., 2005, 14, (4), pp. 722733.
    5. 5)
      • 10. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    6. 6)
      • 28. Xie, D., Min, D., Huang, Y., et al: ‘Classified effects of nanofillers on DC breakdown and partial discharge resistance of polypropylene/alumina nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 698705.
    7. 7)
      • 12. Li, S., Xie, D., Qu, G., et al: ‘Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS’, Appl. Surf. Sci., 2019, 478, pp. 451458.
    8. 8)
      • 18. Dai, Z., Li, T., Gao, Y., et al: ‘Improved dielectric and energy storage properties of poly(vinyl alcohol) nanocomposites by strengthening interfacial hydrogen-bonding interaction’, Colloid. Surface. A, 2018, 548, pp. 179190.
    9. 9)
      • 27. Roy, M., Nelson, J.K., MacCrone, R.K., et al: ‘Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectricsJ.Mater. Sci., 2007, 42, (11), pp. 37893799.
    10. 10)
      • 24. Lei, Q., Liu, G.: ‘How to understand the two basic physical processes of polarization and conductance in engineering dielectrics and scientific principles and methods of their measurement’, Proc. CSEE, 2018, 38, (23), pp. 67696789 (in Chinese).
    11. 11)
      • 15. Tian, F., Lei, Q., Wang, X., et al: ‘Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 763769.
    12. 12)
      • 32. Li, S., Min, D., Wang, W., et al: ‘Modelling of dielectric breakdown through charge dynamics for polymer nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 34763485.
    13. 13)
      • 14. Smith, R.C., Liang, C., Landry, M., et al: ‘The mechanisms leading to the useful electrical properties of polymer nanodielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 187196.
    14. 14)
      • 2. Li, S., Yu, S., Feng, Y.: ‘Progress in and prospects for electrical insulating materials’, High Volt., 2016, 1, (3), pp. 122129.
    15. 15)
      • 21. Grabowski, C.A., Fillery, S.P., Westing, N.M., et al: ‘Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix’, ACS Appl. Mater. Interfaces, 2013, 5, (12), pp. 54865492.
    16. 16)
      • 3. Gedde, U.W.: ‘Polymers physics’ (Springer Science & Business Media, The Netherlands, 2013).
    17. 17)
      • 11. Li, S., Yin, G., Chen, G., et al: ‘Short-term breakdown and long-term failure in nanodielectrics: a review’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (5), pp. 15231535.
    18. 18)
      • 34. Roy, S.L., Segur, P., Teyssedre, G., et al: ‘Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction’, J Phys. D Appl. Phys., 2004, 37, (2), pp. 298305.
    19. 19)
      • 31. Min, D., Yan, C., Mi, R., et al: ‘Carrier transport and molecular displacement modulated dc electrical breakdown of polypropylene nanocomposites’, Polymers-Basel, 2018, 10, (11), p. 1207.
    20. 20)
      • 5. Cox, D.L., Pines, D.: ‘Complex adaptive matter: emergent phenomena in materials’, MRS Bull.., 2005, 30, (6), pp. 425432.
    21. 21)
      • 19. Cao, Y., Irwin, P.C., Younsi, K.: ‘The future of nanodielectrics in the electrical power industry’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 797807.
    22. 22)
      • 35. Zhao, J., Chen, G., Zhong, L., et al: ‘Origin of thickness dependent dc electrical breakdown in dielectrics’, Appl. Phys. Lett., 2012, 100, (22), p. 222904.
    23. 23)
      • 39. Zhong, X., Wu, G., Yang, Y., et al: ‘Effects of nanoparticles on reducing partial discharge induced degradation of polyimide/Al2O3 nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 594602.
    24. 24)
      • 26. Li, S., Min, D., Wang, W., et al: ‘Linking traps to dielectric breakdown through charge dynamics for polymer nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27772785.
    25. 25)
      • 38. Xin, M., Chang, Z., Luo, H., et al: ‘An electrical super-insulator prototype of 1D gas-solid Al2O3 nanocell’, Nano Energy, 2017, 39, pp. 95100.
    26. 26)
      • 6. Lewis, T.J.: ‘Interfaces: nanometric dielectrics’, J Phys. D Appl. Phys., 2005, 38, (2), pp. 202212.
    27. 27)
      • 8. Li, S., Yin, G., Bai, S., et al: ‘A new potential barrier model in epoxy resin nanodielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 15351543.
    28. 28)
      • 16. Li, Z., Du, B., Han, C., et al: ‘Trap modulated charge carrier transport in polyethylene/graphene nanocomposites’, Sci. Rep., 2017, 7, (1), p. 4015.
    29. 29)
      • 4. Feng, Y., Suga, T., Nishide, H., et al: ‘How to install TEMPO in dielectric polymers-their rational design toward energy-storable materials’, Macromol. Rapid Commun., 2019, 40, (4), p. 1800734.
    30. 30)
      • 25. Xie, D., Yan, C., Huang, Y., et al: ‘Study on short-term DC breakdown and corona resistance mechanism of polyimide’. Proc. Int. Symp. Electr. Insul. Mater., Toyohashi, Japan, September 2017, pp. 437441.
    31. 31)
      • 1. Lei, Q., Li, S.: ‘Several important issues and thinking about engineering dielectrics’, High Volt. Eng., 2015, 41, (8), pp. 24732480. (in Chinese).
    32. 32)
      • 20. Li, C., Hu, J., Lin, C., et al: ‘The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites’, J Phys. D Appl. Phys., 2016, 49, (44), p. 445304.
    33. 33)
      • 17. Wang, W., Min, D., Li, S.: ‘Understanding the conduction and breakdown properties of polyethylene nanodielectrics: effect of deep traps’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 564572.
    34. 34)
      • 9. Nelson, J.K., Fothergill, J.C.: ‘Internal charge behaviour of nanocomposites’, Nanotechnology, 2004, 15, (5), pp. 586595.
    35. 35)
      • 13. Roy, M., Nelson, J.K., MacCrone, R.K., et al: ‘Polymer nanocomposite dielectrics-the role of the interface’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 629643.
    36. 36)
      • 36. Artbauer, J.: ‘Electric strength of polymers’, J Phys. D Appl. Phys., 1996, 29, (2), pp. 446456.
    37. 37)
      • 7. Shen, Y., Lin, Y.H., Nan, C.W.: ‘Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles’, Adv. Funct. Mater., 2007, 17, (14), pp. 24052410.
    38. 38)
      • 29. Wu, K., Dissado, L.A., Okamoto, T.: ‘Percolation model for electrical breakdown in insulating polymers’, Appl. Phys. Lett., 2004, 19, (85), pp. 44544456.
    39. 39)
      • 33. Matsui, K., Tanaka, Y., Takada, T., et al: ‘Space charge behavior in low-density polyethylene at pre-breakdown’, IEEE Trans. Dielectr. Electr. Insul., 2005, 3, (12), pp. 406415.
    40. 40)
      • 22. Peng, S., He, J., Hu, J., et al: ‘Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (3), pp. 15121519.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0122
Loading

Related content

content/journals/10.1049/hve.2019.0122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address