access icon openaccess Identification of ultra-high-frequency PD signals in gas-insulated switchgear based on moment features considering electromagnetic mode

The feature extraction and pattern recognition techniques are of great importance to assess the insulation condition of gas-insulated switchgear. In this work, the ultra-high-frequency partial discharge (PD) signals generated from four types of typical insulation defects are analysed using S-transform, and the greyscale image in time-frequency representation is divided into five regions according to the cutoff frequencies of TE m 1 modes. Then, the three low-order moments of every subregion are extracted and the feature selection is performed based on the J criterion. To confirm the effectiveness of selected moment features after considering the electromagnetic modes, the support vector machine, k-nearest neighbour and particle swarm-optimised extreme learning machine (ELM) are utilised to classify the type of PD, and they achieve the recognition accuracies of 92, 88.5 and 95%, respectively. In addition, the results show that the ELM offers good generalisation performance at the fastest learning and testing speeds, thus more suitable for a real-time PD detection.

Inspec keywords: pattern recognition; power engineering computing; learning (artificial intelligence); time-frequency analysis; partial discharge measurement; support vector machines; gas insulated switchgear; particle swarm optimisation; feature extraction

Other keywords: nearest neighbour; ultra-high-frequency PD signals; selected moment features; pattern recognition techniques; low-order moments; feature selection; feature extraction; insulation condition; time-frequency representation; ultra-high-frequency partial discharge signals; cutoff frequencies; typical insulation defects; real-time PD detection; gas-insulated switchgear; electromagnetic mode

Subjects: Other topics in statistics; Data handling techniques; Knowledge engineering techniques; Other topics in statistics; Power engineering computing; Switchgear; Dielectric breakdown and discharges; Charge measurement

References

    1. 1)
      • 25. Boggs, S.A.: ‘Partial discharge: overview and signal generation’, IEEE Electr. Insul. Mag., 1990, 6, (4), pp. 3339.
    2. 2)
      • 21. Evagorou, D., Kyprianou, A., Lewin, P.L., et al: ‘Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network’, IET Sci. Meas. Technol., 2010, 4, (3), pp. 177192.
    3. 3)
      • 13. Hikita, M., Ohtsuka, S., Ueta, G., et al: ‘Influence of insulating spacer type on propagation properties of PD-induced electromagnetic wave in GIS’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (5), pp. 16421648.
    4. 4)
      • 27. Boggs, S.A.: ‘Partial discharge III: cavity-induced PD in solid dielectrics’, IEEE Electr. Insul. Mag., 1990, 6, (6), pp. 1116.
    5. 5)
      • 28. Judd, M.D., Farish, O.: ‘A pulsed GTEM system for UHF sensor calibration’, IEEE Trans. Instrum. Meas., 1998, 47, (4), pp. 875880.
    6. 6)
      • 22. Zheng, K., Si, G., Diao, L., et al: ‘Partial discharge recognition based on SF6 decomposition products and support vector machine’, IET Sci. Meas. Technol., 2012, 6, (4), pp. 198204.
    7. 7)
      • 37. Garcia, E.K., Feldman, S., Gupta, M.R., et al: ‘Completely lazy learning’, IEEE Trans. Knowl. Data Eng., 2010, 22, (9), pp. 12741285.
    8. 8)
      • 35. Clark, A.R.J., Everson, R.M.: ‘Multi-objective learning of relevance vector machine classifiers with multi-resolution kernels’, Pattern Recognit.., 2012, 45, (9), pp. 35353543.
    9. 9)
      • 18. Dai, D., Wang, X., Long, J., et al: ‘Feature extraction of GIS partial discharge signal based on S-transform and singular value decomposition’, IET Sci. Meas. Technol., 2017, 11, (2), pp. 186193.
    10. 10)
      • 14. Hikita, M., Ohtsuka, S., Okabe, S., et al: ‘Influence of disconnecting part on propagation properties of PD-induced electromagnetic wave in model GIS’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (6), pp. 17311737.
    11. 11)
      • 34. Mathur, A., Foody, G.M.: ‘Multiclass and binary SVM classification: implications for training and classification users’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (2), pp. 241245.
    12. 12)
      • 6. Gao, W., Ding, D., Liu, W.: ‘Research on the typical partial discharge using the UHF detection method for GIS’, IEEE Trans. Power Deliver., 2011, 26, (4), pp. 26212629.
    13. 13)
      • 15. Hikita, M., Ohtsuka, S., Wada, J., et al: ‘Propagation properties of PD-induced electromagnetic wave in 66 kV GIS model tank with L branch structure’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 16781685.
    14. 14)
      • 32. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Proc. Sixth Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 3943.
    15. 15)
      • 1. Zeng, F., Dong, Y., Tang, J.: ‘Feature extraction and severity assessment of partial discharge under protrusion defect based on fuzzy comprehensive evaluation’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 24932500.
    16. 16)
      • 17. Jin, J., Chang, C.S., Chang, C., et al: ‘Classification of partial discharge events in gas-insulated substations using wavelet packet transform and neural network approaches’, IEE Proc. – Sci. Meas. Technol., 2006, 153, (2), pp. 5563.
    17. 17)
      • 3. Behzad, K., Hamed, J.: ‘Towards automated statistical partial discharge source classification using pattern recognition techniques’, High Voltage, 2018, 3, (3), pp. 162169.
    18. 18)
      • 29. Florkowski, M., Florkowska, B.: ‘Wavelet-based partial discharge image denoising’, IET Gener. Transm. Distrib, 2007, 1, (2), pp. 340347.
    19. 19)
      • 30. Judd, M.D., Farish, O., Hampton, B.F.: ‘The excitation of UHF signals by partial discharges in GIS’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (2), pp. 213222.
    20. 20)
      • 20. Wang, K., Li, J., Zhang, S., et al: ‘A new image-oriented feature extraction method for partial discharges’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 10151024.
    21. 21)
      • 4. Luo, L., Han, B., Chen, J., et al: ‘Partial discharge detection and recognition in random matrix theory paradigm’, IEEE Access, 2017, 5, pp. 82058213.
    22. 22)
      • 7. Tang, J., Wang, D., Fan, L., et al: ‘Feature parameters extraction of GIS partial discharge signal with multifractal detrended fluctuation analysis’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 30373045.
    23. 23)
      • 5. Li, Z., Luo, L., Sheng, G., et al: ‘UHF partial discharge localisation method in substation based on dimension-reduced RSSI fingerprint’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 398405.
    24. 24)
      • 31. Sinaga, H.H., Phung, B.T., Blackburn, T.R.: ‘Recognition of single and multiple partial discharge sources in transformers based on ultra-high frequency signals’, IET Gener. Transm. Distrib., 2014, 8, (1), pp. 160169.
    25. 25)
      • 24. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1), pp. 489501.
    26. 26)
      • 9. Luo, G., Zhang, D., Koh, Y., et al: ‘Time-frequency entropy-based partial-discharge extraction for nonintrusive measurement’, IEEE Trans. Power Deliver., 2012, 27, (4), pp. 19191927.
    27. 27)
      • 36. Burges, C.J.: ‘A tutorial on support vector machines for pattern recognition’, Data Min. Knowl. Discov., 1998, 2, (2), pp. 121167.
    28. 28)
      • 23. Harbaji, M.M.O., Zahed, A.H., Habboub, S.A., et al: ‘Design of hilbert fractal antenna for partial discharge classification in oil-paper insulated system’, IEEE Sensors J., 2017, 17, (4), pp. 10371045.
    29. 29)
      • 2. Ma, Z., Yang, Y., Cowan, K., et al: ‘Fractal-based autonomous partial discharge pattern recognition method for MV motors’, High Voltage, 2018, 3, (2), pp. 103114.
    30. 30)
      • 8. Li, J., Jiang, T., Harrison, R.F., et al: ‘Recognition of ultra high frequency partial discharge signals using multi-scale features’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (4), pp. 14121420.
    31. 31)
      • 10. Bajwa, A.A., Habib, S., Kamran, M.: ‘An investigation into partial discharge pulse extraction methods’, Int. J. Elec. Power Energy Syst., 2015, 73, pp. 964982.
    32. 32)
      • 11. Zhou, W., Liu, Y., Li, P., et al: ‘Feature parameters extraction of power transformer PD signal based on texture features in TF representation’, IET Sci. Meas. Technol., 2017, 11, (4), pp. 445452.
    33. 33)
      • 12. Wang, K., Liao, R., Yang, L., et al: ‘A hybrid algorithm based on S transform and affinity propagation clustering for separation of two simultaneously artificial partial discharge sources’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 10421060.
    34. 34)
      • 33. Wang, C., Wu, F., Shi, Z., et al: ‘Indoor positioning technique by combining RFID and particle swarm optimization-based back propagation neural network’, Optik – Int. J. Light Electron. Optics, 2016, 127, (17), pp. 68396849.
    35. 35)
      • 19. Li, X., Wang, X., Xie, D., et al: ‘Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments’, IET Sci. Meas. Technol., 2018, 12, (2), pp. 169175.
    36. 36)
      • 16. Zhu, M., Xue, J., Zhang, J., et al: ‘Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique’, IET Sci. Meas. Technol., 2016, 10, (4), pp. 316326.
    37. 37)
      • 26. Hara, M., Negara, Y., Setoguchi, M., et al: ‘Particle-triggered pre-breakdown phenomena in atmospheric air gap under AC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 10711081.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0098
Loading

Related content

content/journals/10.1049/hve.2019.0098
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading