Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess New experimental study on the DC flashover voltage of polymer insulators: combined effect of surface charges and air humidity

This research provides conclusions that can partially cover the lack of knowledge related to the effects of ambient atmospheric conditions on DC electric power transportation. Two polymer insulating materials are used for completing this research study. Inside a climate chamber, the relative humidity is controlled and adjusted from 20% to 80% RH. Then, the samples are charged with positive or negative charges by applying to the corona-generating ring of needles. The surface potential is measured using an electrostatic voltmeter and is converted into surface charge density later by applying the probe response matrix method. The pre-charged samples are then stressed with high-voltage negative or positive DC values inside the climate chamber over a range of controlled values of the surrounding air humidity until flashover takes place. The space charges, which can drift in the air gap to reach the solid surface, are highly affected by the level of the relative humidity of the surrounding air. Also, increasing humidity results in a reduction of the DC flashover inception voltage and a shorter time to flashover regardless of the voltage polarity. Moreover, the positive or negative flashover inception voltage of both materials increases with pre-deposited negative charges while it decreases with pre-deposited positive charges.

References

    1. 1)
      • 21. IEEE Std 4-2013: ‘IEEE standard for high-voltage testing techniques’, 2013.
    2. 2)
      • 12. Zheng, J.C., Wang, Z., Liu, Y.W.: ‘Influence of humidity on flashover in air in the presence of dielectric surfaces’. Proc. 10th IEEE Region Conf. on Computer, Communication, Control and Power Engineering, (TENCON ‘93), Beijing, China, October 1993, pp. 443449.
    3. 3)
      • 14. Lazaridis, L.A., Mikropoulos, P.N.: ‘Negative impulse flashover along cylindrical insulating surfaces bridging a short rod-plane gap under variable humidity’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (5), pp. 15851591, doi:10.1109/TDEI.2010.5595561.
    4. 4)
      • 11. McDermid, W., Swatek, D.R.: ‘Experience with dielectric surfaces of FRP tools used in live line work’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (6), pp. 24152427, doi:10.1109/TDEI.2014.004527.
    5. 5)
      • 1. Amer, M., Laninga, J., McDermid, W., et al: ‘Surface charging and its effects on DC flashover strength of insulating materials’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (6), pp. 24522460, doi:10.1109/tdei.2018.007491.
    6. 6)
      • 5. Montano, R., Sjostedt, H., Serdyuk, Y., et al: ‘Effect of surface charges on the flashover voltage characteristics of polymeric materials: comparison between theory and practice’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Vancouver, British Columbia, Canada, October 2007, pp. 368371.
    7. 7)
      • 26. Liu, Y., Huang, S., Zhu, L.: ‘Influence of humidity and air pressure on the ion mobility based on drift tube method’, CSEE J. Power Energy Syst., 2015, 1, (3), pp. 3741, doi: 10.17775/CSEEJPES.2015.00033.
    8. 8)
      • 31. Tanaka, H., Kawashima, T., Murakami, Y., et al: ‘Flashover characteristics of silicone rubber surface influenced by surface charge’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Ann Arbor, Michigan, USA, October 2015, pp. 836839.
    9. 9)
      • 13. Kawamura, T., Isaka, K.: ‘Humidity dependence of moisture absorption, leakage current and flashover voltage on contaminated insulator surfaces’, J. Electr. Eng. Japan, 1973, 93, (5), pp. 6268, doi:10.1002/eej.4390930511.
    10. 10)
      • 30. Xiao, D.: ‘Fundamental theory of streamer and leader discharge’, ‘Gas discharge and gas insulation’ (Springer, Berlin, Heidelberg, Germany), CH.4, pp. 89121.
    11. 11)
      • 27. Krile, J.T., Neuber, A.A., Dickens, J.C., et al: ‘DC flashover of a dielectric surface in atmospheric conditions’, IEEE Trans. Plasma Sci., 2004, 32, (5), pp. 18281834, doi: 10.1109/TPS.2004.835483.
    12. 12)
      • 18. Amer, M., Laninga, J., Swatek, D.R., et al: ‘Surface charging characteristics of fiberglass reinforced plastic (FRP) hot sticks under HVDC operating conditions’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Fort Worth, Texas, USA, October 2017, pp. 789792.
    13. 13)
      • 6. Laninga, J., Amer, M., Swatek, D.R., et al: ‘HVDC flashover performance of fibreglass reinforced (FRP) hot sticks considering space charges’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Fort Worth, Texas, USA, October 2017, pp. 609612.
    14. 14)
      • 15. Lazaridis, L.A., Mikropoulos, P.N.: ‘Positive impulse flashover along smooth cylindrical insulating surfaces under variable humidity’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (3), pp. 745754, doi:10.1109/TDEI.2011.5931061.
    15. 15)
      • 16. Lutz, B., Kindersberger, J.: ‘Influence of relative humidity on surface charge decay on epoxy resin insulators’. Proc. IEEE 9th Int. Conf. Properties and Applications of Dielectric Materials, Harbin, China, July 2009, pp. 883886.
    16. 16)
      • 28. Holbøll, J., Sverrisson, S.I.: ‘The influence of temperature differences in moist environments on surface discharges on solid insulation’. Proc. 24th Nordic Insulation Symp. on Materials, Components, and Diagnostics, Copenhagen, Denmark, June 2015, pp. 134137.
    17. 17)
      • 8. Chuanyang, L., Jun, H., Chuanjie, L., et al: ‘Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators’, J. Phys. D: Appl. Phys., 2017, 50, (6), pp. 112, doi:10.1088/1361-6463/aa5207.
    18. 18)
      • 23. Li, C., Song, J., Lin, L., et al: ‘Effects of vapor with different chemical properties on corona partial discharges of stator windings’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 964972, doi:10.1109/TDEI.2014.6832238.
    19. 19)
      • 29. Tremas, L., Lesaint, O., Bonifaci, N., et al: ‘Influence of the solid material nature on the inception of creeping discharges in air’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Fort Worth, Texas, USA, October 2017, pp. 548551.
    20. 20)
      • 22. Levesque, M., David, E., Hudon, C., et al: ‘Contribution of humidity to the evolution of slot partial discharges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 6175, doi:10.1109/TDEI.2012.6148503.
    21. 21)
      • 20. IEC Std. 60060-1: ‘High-voltage test techniques – part 1: general definitions and test requirements’, 2010.
    22. 22)
      • 3. Su, G.Q., Mu, H.B., Shen, W.W., et al: ‘Surface charge accumulation on silicon rubber material under DC voltage in atmosphere’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Shenzhen, China, October 2013, pp. 456459.
    23. 23)
      • 4. Kumara, S., Alam, S., Hoque, I.R., et al: ‘DC flashover characteristics of a polymeric insulator in presence of surface charges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 10841090, doi: 10.1109/TDEI.2012.6215116.
    24. 24)
      • 7. Takabayashi, K., Nakane, R., Okubo, H., et al: ‘High voltage DC partial discharge and flashover characteristics with surface charging on solid insulators in air’, IEEE Electr. Insul. Mag., 2018, 34, (5), pp. 1826, doi:10.1109/mei.2018.8445431.
    25. 25)
      • 9. Qi, B., Gao, C., Li, C., et al: ‘Effect of surface charge accumulation on flashover voltage of GIS insulator in SF6 under DC and AC voltages’. Proc. IEEE Int. Conf. Electrical Insulation and Dielectric Phenomena, Ann Arbor, Michigan, USA, October 2015, pp. 848851.
    26. 26)
      • 25. Aints, M., Haljaste, A., Plank, T., et al: ‘Absorption of photo-ionizing radiation of corona discharges in air’, Plasma Proceses Polym., 2008, 5, (7), pp. 672680, doi:10.1002/ppap.200800031.
    27. 27)
      • 24. Messaoudi, R., Younsi, A., Massines, F., et al: ‘Influence of humidity on current waveform and light emission of a low-frequency discharge controlled by a dielectric barrier’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (4), pp. 537543, doi:10.1109/94.536733.
    28. 28)
      • 19. Faircloth, D.C., Allen, N.L.: ‘High resolution measurements of surface charge densities on insulator surfaces’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (2), pp. 285290, doi:10.1109/TDEI.2003.1194112.
    29. 29)
      • 2. Kumara, S., Hoque, I.R., Alam, S., et al: ‘Surface charges on cylindrical polymeric insulators’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 10761083, doi:10.1109/TDEI.2012.6215115.
    30. 30)
      • 10. McDermid, W.: ‘Character of fast flashover of external insulation’. Proc. IEEE Int. Sympos. Electrical Insulation, Vancouver, British Columbia, Canada, June 2008, pp. 510513.
    31. 31)
      • 17. Song, W., Shen, W.W., Zhang, G.J., et al: ‘Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 961969, doi:10.1109/TDEI.2015.7076797.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0094
Loading

Related content

content/journals/10.1049/hve.2019.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address