Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Roles of UV light strength and auxiliary electric field in the photocatalytic degradation effect of organic contaminant

The accumulation of contaminants on the electrical devices could adversely affect the operation. The present work used photocatalytic functional material to coat on the surface of the electrical devices to prevent the influence of organic contamination. This kind of material was mainly composed of TiO2 that can remove the contamination by the effect of photooxidation. The photocatalysis was affected by the strength of UV light and electric field. In the experiment, methyl orange (MO) was used as the organic contaminant. The effect of UV light and auxiliary electric field were analysed based on the theoretical simulation. With the stronger UV light, more electron–hole pairs were generated, photocatalytic effect became more pronounced. With the auxiliary electric field, the recombination of electron and hole could be restrained that would increase the productive rate of hole; therefore, more hydroxyl radical will be produced to degrade MO.

References

    1. 1)
      • 24. Vinodgopal, K., Stafford, U., Gray, K.A.: ‘The role of oxygen and reaction intermediated in the degradation of 4-chlorophenol on immobilized TiO2 particulate films’, J. Phys. Chem., 1994, 98, p. 6797.
    2. 2)
      • 18. Macfie, G., Wadhawan, J., Compton, R.: ‘Photoelectrochemical reduction of chlorinated nitrobenzenes: heavy atom versus radical ion lifetime effects’, J. Electroanal. Chem., 2001, 510, (1), pp. 120127.
    3. 3)
      • 45. Xiao, F., Zhou, W., Sun, B., et al: ‘Engineering oxygen vacancy on rutile TiO2 for efficient electron–hole separation and high solar-driven photocatalytic hydrogen evolution’, Sci. China Mater., 2018, 61, (6), pp. 822830.
    4. 4)
      • 15. Kesselman, J.M., Lewis, N.S., Hoffmann, M.R.: ‘Photoelectrochemical degradation of 4-chlorocatechol at TiO2 electrodes: comparison between sorption and photoreactivity’, Environ. Sci. Technol., 1997, 8, (31), pp. 22982302.
    5. 5)
      • 17. He, C., Ya, X., Zhu, X.: ‘A novel method for improving photocatalytic activity of TiO2 film: the combination of Ag deposition with application of external electric field’, Thin Solid Films, 2002, 422, (1), pp. 235238.
    6. 6)
      • 12. Nakajima, K., Lu, D., Hara, M., et al: ‘Synthesis and application of thermally stable mesoporous Ta2O5 photocatalyst for overall water decomposition’, Surf. Sci. Catal., 2005, 158, pp. 14771484.
    7. 7)
      • 5. Zhang, Z., Qiao, X., Zhang, Y., et al: ‘AC flashover performance of different shed configurations of composite insulators under fan-shaped non-uniform pollution’, High Volt., 2018, 3, (3), pp. 199206.
    8. 8)
      • 6. Majid Hussain, M., Farokhi, S., McMeekin, S.G., et al: ‘Mechanism of saline deposition and surface flashover on outdoor insulators near coastal areas part II: impact of various environment stresses’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 10681076.
    9. 9)
      • 49. Sun, X., Luo, W., Chen, L., et al: ‘Synthesis of porous al doped ZnO nanosheets with high adsorption and photodecolorizative activity and the key role of al doping for methyl orange removal’, RSC Adv., 2016, 6, pp. 22412251.
    10. 10)
      • 4. Jiang, X., Yuan, J., Shu, L., et al: ‘Comparison of DC pollution flashover performances of various types of porcelain, glass, and composite insulators’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 11831190.
    11. 11)
      • 48. Krýsa, J., Waldner, G., Ánková, H.M., et al: ‘Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: roles of adsorption processes and mechanistic complexity’, Appl. Catal. B, Eenviron., 2006, 64, (3), pp. 290301.
    12. 12)
      • 37. Ahn, N., Son, D., Jang, I., et al: ‘Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(ii) iodide’, J. Am. Chem. Soc., 2015, 137, (27), p. 8696.
    13. 13)
      • 30. Garcia-Segura, S., Brillas, E.: ‘Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters’, J. Photochem. Photobiol. C, 2017, 31, pp. 135.
    14. 14)
      • 40. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice Hall, New Jersey, 2008), pp. 205247.
    15. 15)
      • 13. Vinodgopal, K., Hotchandani, S., Kamat, P.: ‘Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol’, J. Phys. Chem., 1993, 97, (35), p. 9040.
    16. 16)
      • 51. Xu, Y., Zhong, D., Jia, J., et al: ‘Dual slant-placed electrodes thin-film photocatalytic reactor: enhanced dye degradation efficiency by self-generated electric field’, Chem. Eng. J., 2013, 225, pp. 138143.
    17. 17)
      • 28. Phan, D.D., Babick, F., Trịnh, T.H.T., et al: ‘Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes’, Chem. Eng. Sci., 2018, 191, pp. 332342.
    18. 18)
      • 33. Conings, B., Baeten, L., De, D., et al: ‘Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach’, Adv. Mater., 2014, 26, (13), pp. 20412046.
    19. 19)
      • 38. Zhang, X., Liu, X., Fan, C., et al: ‘A novel biocl thin film prepared by electrochemical method and its application in photocatalysis’, Appl. Catal. B, Eenviron., 2013, 132, (9), pp. 332341.
    20. 20)
      • 21. Li, D., Zheng, Y., Fu, X., et al: ‘SO2−4/TiO2 catalyst prepared by microwave method and the research of its photocatalytic oxidation activity’, Acta Phys.-Chim. Sin., 2001, 3, (17), pp. 270272.
    21. 21)
      • 16. Vinodgopal, K., Stafford, U., Gray, K., et al: ‘Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films’, J. Phys. Chem., 1994, 27, (98), pp. 67976803.
    22. 22)
      • 47. Bideau, M., Claudel, B., Otterbein, M.: ‘Photocatalysis of formic acid oxidation by oxygen in an aqueous medium’, J. Photochem., 1980, 14, (4), pp. 291302.
    23. 23)
      • 43. Archana, P.S., Jose, R., Vijila, C., et al: ‘Improved electron diffusion coefficient in electrospun TiO2 nanowires’, J. Phys. Chem. C, 2009, 113, (52), pp. 2153821542.
    24. 24)
      • 2. Mei, H., Guan, X., Fu, X., et al: ‘Influence of tower anticorrosion coating as contaminant on operation characteristics of composite insulator’, High Volt., 2018, 3, (3), pp. 193198.
    25. 25)
      • 29. Jinqiu, H., Chaoqun, T., Xinguo, M., et al: ‘Effect of electric field on the photocatalytic performance of titania nano-membrane’, Chin. J. Catal., 2006, 27, (9), pp. 783786.
    26. 26)
      • 32. Marchioro, A., Friedrich, D., Moser, J., et al: ‘Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells’, Nat. Photonics, 2014, 8, (3), pp. 250255.
    27. 27)
      • 26. Fan, Z., Shi, H., Zhao, H., et al: ‘Application of carbon aerogel electrosorption for enhanced Bi2Wo6 photoelectrocatalysis and elimination of trace nonylphenol’, Carbon, 2018, 126, pp. 279288.
    28. 28)
      • 50. Oldershaw, R.L.: ‘Rydberg atoms, variable stars, Kepler's third law and E = hv’, Int. J. Gen. Syst., 1988, 14, (1), pp. 7784.
    29. 29)
      • 34. Dongqin, B., Lei, Y., Gerrit, B., et al: ‘Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells’, J. Phys. Chem. Lett., 2013, 4, (9), pp. 15321536.
    30. 30)
      • 46. Di Somma, I., Clarizia, L., Satyro, S., et al: ‘A kinetic study of the simultaneous removal of EDDS and cupric ions from acidic aqueous solutions by TiO2-based photocatalysis under artificial solar light irradiation and deaerated batch conditions’, Chem. Eng. J., 2015, 270, pp. 519527.
    31. 31)
      • 10. Honda, K., Fujishima, A.: ‘Electrochemical photolysis of water at a semiconductor electrode’, Nature, 1972, 238, (5358), pp. 3738.
    32. 32)
      • 8. Yi, Y., Zhang, C., Wang, L., et al: ‘Conductor surface conditions effects on the ion-flow field of long-term operating conductors of the HVDC transmission line’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 21712178.
    33. 33)
      • 20. Horikoshi, S., Tokunaga, A., Hidaka, H., et al: ‘Environmental remediation by an integrated microwave/UV-illumination method. 1. Microwave-assisted degradation of rhodamine-b dye in aqueous TiO2 dispersions’, J. Photochem. Photobiol. A, 2002, 6, (36), p. 1357.
    34. 34)
      • 36. Karakitsou, K., Verykios, X.: ‘Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage’, J. Phys. Chem., 1993, 97, (6), pp. 11841189.
    35. 35)
      • 1. Schneider, T., Holst, E.: ‘Variability of total mass and other measures of small samples of particles’, J. Aerosol Sci., 1995, 26, (1), pp. 127136.
    36. 36)
      • 41. Georgiev, J.S., Anestiev, L.A.: ‘Influence of the surface processes on the hydrogen permeation through ferritic steel and amorphous Fe40Ni40Mo4B16 alloy specimens’, J. Nucl. Mater., 1997, 249, (2), pp. 133141.
    37. 37)
      • 35. Park, N.: ‘Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell’, J. Phys. Chem. Lett., 2013, 4, (15), pp. 24232429.
    38. 38)
      • 42. Leaist, D.G.: ‘Diffusion with stepwise aggregation in aqueous solutions of the ionic azo dye methyl orange’, J. Colloid Interface Sci., 1988, 125, (1), pp. 327332.
    39. 39)
      • 9. Bian, X., Li, H., Zhang, X., et al: ‘Influence of fine particulate matter on the variation of surface morphologies of conductors subjected to positive DC voltages’, Appl. Phys. Lett., 2018, 113, (20), p. 204102.
    40. 40)
      • 7. Wang, L., Cao, B., Guan, Z., et al: ‘Influence of temperature difference on wetting characteristics of insulators’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (6), pp. 36223629.
    41. 41)
      • 39. Tang, J., Zou, Z., Ye, J.: ‘Efficient photocatalysis on BaBiO3 driven by visible light’, J. Phys. Chem. C, 2007, 111, (34), pp. 1277912785.
    42. 42)
      • 27. Dai, B., Lu, C., Kou, J., et al: ‘Photocatalytic performance of PMN-PT@TiO2 highly enhanced by alternative spatial electric field induced charge separation effect’, J. Alloys Compd., 2017, 696, pp. 988995.
    43. 43)
      • 31. Juarezperez, E., Wuβler, M., Fabregatsantiago, F., et al: ‘Role of the selective contacts in the performance of lead halide perovskite solar cells’, J. Phys. Chem. Lett., 2014, 5, (4), pp. 680685.
    44. 44)
      • 11. Mills, A., Lee, S., Lepre, A.: ‘Photodecomposition of ozone sensitised by a film of titanium dioxide on glass’, J. Photochem. Photobiol. A, 2003, 155, (1), pp. 199205.
    45. 45)
      • 14. Kim, D., Anderson, M.: ‘Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode’, Environ. Sci. Technol., 1994, 3, (28), p. 479.
    46. 46)
      • 3. Cheng, L., Shao, S., Zhang, S., et al: ‘Research on the long-time operation performance of composite insulator shed hydrophobicity under hydrothermal conditions’, High Volt., 2018, 3, (1), pp. 6772.
    47. 47)
      • 44. Akira, F., Zhang, X., Tryk, D.A.: ‘Tio2 photocatalysis and related surface phenomena’, Surf. Sci. Rep., 2008, 63, (12), pp. 515582.
    48. 48)
      • 22. Smirniotis, E.R.L.D.: ‘TiO-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support’, Appl. Catal. B, Eenviron., 2003, 1, (42), pp. 111.
    49. 49)
      • 23. Torres, R.A., Nieto, J.I., Combet, E., et al: ‘Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water’, Appl. Catal. B, Environ., 2008, 80, (1), pp. 168175.
    50. 50)
      • 19. Hájek, V.C.M.: ‘Microwave photochemistry. Photoinitiated radical addition of tetrahydrofuran to perfluorohexylethene under microwave irradiation’, J. Photochem. Photobiol. A, 1999, 1–3, (123), pp. 2123.
    51. 51)
      • 25. Hidaka, H., Ajisaka, K., Horikoshi, S., et al: ‘Comparative assessment of the efficiency of TiO2/OTE thin film electrodes fabricated by three deposition methods: photoelectrochemical degradation of the DBS anionic surfactant’, J. Photochem. Photobiol. A, 2001, 138, (2), pp. 185192.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0018
Loading

Related content

content/journals/10.1049/hve.2019.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address