access icon openaccess Failure analysis of a field brittle fracture composite insulator: characterisation by X-ray photoelectron spectroscopy analysis

In the present work, a field brittle fracture composite insulator was collected and examined with the purpose of obtaining a better understanding of the failure features. Firstly, the macroscopic and microscopic fractography of this fractured composite insulator was observed confirming that the classical brittle fracture morphology features appeared in this field failed composite insulator. Secondly, the X-ray photoelectron spectroscopy (XPS) analysis was performed on the fracture surface of the glass-fibre-reinforced polymer rod. By examining the XPS survey spectra and high-resolution XPS spectra for nitrogen, sulphur, silicon, calcium, aluminium, boron and carbon elements, the type of the glass fibre and the acid source responsible for this brittle fracture composite insulator were confirmed. Furthermore, the oxidation of the silicate network of glass fibre at the fracture surface was first observed, meanwhile, the oxidation of the epoxy resin matrix was also observed. The leaching of non-silicate constituents leading to a high-silica glass fibre was also observed; moreover, in comparison with the calcium and aluminium elements, the boron element resides in the silicate network was more preferential to be leached. The present work provides an insight into the brittle fracture in high voltage composite insulator from chemical properties point of view.

Inspec keywords: failure (mechanical); composite insulators; resins; surface morphology; glass fibre reinforced plastics; brittle fracture; fractography; X-ray photoelectron spectra; oxidation

Other keywords: microscopic fractography; oxidation; X-ray photoelectron spectroscopy analysis; brittle fracture; epoxy resin matrix; macroscopic fractography; silicate glass network; classical brittle fracture morphology; glass-fibre-reinforced polymer rod; leaching; field brittle fracture composite insulator; fracture surface; failure analysis

Subjects: Fatigue, embrittlement, and fracture; Nondestructive materials testing methods; Photoelectron spectra of composite surfaces; Fatigue, brittleness, fracture, and cracks; Mechanical and acoustical properties of solid surfaces and interfaces; Solid surface structure; Surface treatment and degradation of composites

References

    1. 1)
      • 20. Woicik, J.C.: ‘Hard X-ray photoelectron spectroscopy (HAXPES)’ (Springer International Publishing, Berlin, Germany, 2015).
    2. 2)
      • 22. Noble, B., Harris, S.J., Owen, M.J.: ‘Stress corrosion cracking of GRP pultruded rods in acid environments’, J. Mater. Sci., 1983, 18, (4), pp. 12441254.
    3. 3)
      • 9. Burnham, J.T., Baker, T., Bernstorf, A., et al: ‘IEEE task force report: brittle fracture in nonceramic insulators’, IEEE Trans. Power Deliv., 2002, 17, (3), pp. 848856.
    4. 4)
      • 30. Barrère, F., Lebugle, A., van Blitterswijk, C., et al: ‘Calcium phosphate interactions with titanium oxide and alumina substrates: an XPS study’, J. Mater. Sci., Mater. Med., 2003, 14, (5), pp. 419426.
    5. 5)
      • 1. Cherney, E.A.: ‘50 years in the development of polymer suspension-type insulators’, IEEE Electr. Insul. Mag., 2013, 29, (3), pp. 1826.
    6. 6)
      • 2. Liang, X., Wang, S., Fan, J., et al: ‘Development of composite insulators in China’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 586594.
    7. 7)
      • 16. Chughtai, A.R., Smith, D.M., Kumosa, L.S., et al: ‘FTIR analysis of non-ceramic composite insulators’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (4), pp. 585596.
    8. 8)
      • 21. Qiu, Q.: ‘Brittle fracture mechanisms of glass-fiber reinforced polymer insulators’. PhD dissertation, Oregon Graduate Institute Science and Technology, Portland, OR, 1995.
    9. 9)
      • 32. Gao, Y., Liang, X., Liu, Y., et al: ‘Effect of electrical stress on glass fiber reinforced polymer used in high voltage composite insulator under wet environment’, Compos. Sci. Technol., 2018, 155, pp. 151159.
    10. 10)
      • 26. Beard, B.C.: ‘Cellulose nitrate as a binding energy reference in N (1s) XPS studies of nitrogen-containing organic molecules’, Appl. Surf. Sci., 1990, 45, (3), pp. 221227.
    11. 11)
      • 17. Liang, X., Dai, J.: ‘Analysis of the acid sources of a field brittle fractured composite insulator’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (4), pp. 870876.
    12. 12)
      • 19. Perruchot, C., Watts, J.F., Lowe, C., et al: ‘Angle-resolved XPS characterization of urea formaldehyde-epoxy systems’, Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films, 2002, 33, (10–11), pp. 869878.
    13. 13)
      • 7. Kumosa, M., Kumosa, L., Armentrout, D.: ‘Failure analyses of nonceramic insulators: part II – the brittle fracture model and failure prevention’, IEEE Electr. Insul. Mag., 2005, 21, (4), pp. 2841.
    14. 14)
      • 24. Mallick, P.K.: ‘Fiber-reinforced composites: materials, manufacturing, and design’ (CRC Press, FL, USA, 2007).
    15. 15)
      • 10. Gao, Y., Liang, X., Bao, W., et al: ‘Failure analysis of a field brittle fracture composite insulator: characterization by FTIR analysis and fractography’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (3), pp. 919927.
    16. 16)
      • 25. Briggs, D.: ‘Handbook of X-ray photoelectron spectroscopy’ (Physical Electronics Division, Eden Prairie, MN, USA, 1979).
    17. 17)
      • 4. Cherney, E.A.: ‘High voltage insulator mechanical load limitations to dielectric material damage’. IEEE PES Transmission and Distribution Conf. and Exposition (T&D), Orlando, FL, USA, 2012, pp. 18.
    18. 18)
      • 34. Qiu, Q., Kumosa, M.: ‘Corrosion of E-glass fibers in acidic environments’, Compos. Sci. Technol., 1997, 57, (5), pp. 497507.
    19. 19)
      • 27. Subagio, D.P., Srinivasan, M., Lim, M., et al: ‘Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor’, Appl. Catal., B, 2010, 95, (3–4), pp. 414422.
    20. 20)
      • 29. Demri, B., Muster, D.: ‘XPS study of some calcium compounds’, J. Mater. Process. Technol., 1995, 55, (3), pp. 311314.
    21. 21)
      • 28. Alexander, M.R., Short, R.D., Jones, F.R., et al: ‘A study of HMDSO/O2 plasma deposits using a high-sensitivity and-energy resolution XPS instrument: curve fitting of the Si 2p core level’, Appl. Surf. Sci., 1999, 137, (1), pp. 179183.
    22. 22)
      • 13. Li, H., Gu, P., Watson, J., et al: ‘Acid corrosion resistance and mechanism of E-glass fibers: boron factor’, J. Mater. Sci., 2013, 48, (8), pp. 30753087.
    23. 23)
      • 18. De Tourreil, C., Thévenet, G., Brocard, E., et al: ‘Determination of the brittle fracture process of field failed HV insulators’. XIV Int. Symp. High Voltage Engineering, Beijing, China, 2005, pp. 14.
    24. 24)
      • 33. Ooi, K., Miyatake, M.: ‘Studies of surface, structural, and sorption properties of acid-leached E-glass fibers’, J. Colloid Interface Sci., 1992, 148, (2), pp. 303309.
    25. 25)
      • 6. Kumosa, M., Kumosa, L., Armentrout, D.: ‘Failure analyses of nonceramic insulators. Part 1: brittle fracture characteristics’, IEEE Electr. Insul. Mag., 2005, 21, (3), pp. 1427.
    26. 26)
      • 12. Armentrout, D.L., Kumosa, M., McQuarrie, T.S.: ‘Boron-free fibers for prevention of acid induced brittle fracture of composite insulator GRP rods’, IEEE Trans. Power Delivery, 2003, 18, (3), pp. 684693.
    27. 27)
      • 5. Baker, A.C., Bernstorf, R.A., Cherney, E.A., et al: ‘High voltage insulators mechanical load limits – part I: overhead line load and strength requirements’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 11061115.
    28. 28)
      • 31. Legrand, J., Gota, S., Guittet, M.J., et al: ‘Synthesis and XPS characterization of nickel boride nanoparticles’, Langmuir, 2002, 18, (10), pp. 41314137.
    29. 29)
      • 3. Gubanski, S.M.: ‘Modern outdoor insulation-concerns and challenges’, IEEE Electr. Insul. Mag., 2005, 21, (6), pp. 511.
    30. 30)
      • 15. Kumosa, M., Kumosa, L., Armentrout, D.: ‘Causes and potential remedies of brittle fracture failure of composite (nonceramic) insulators’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (6), pp. 10371048.
    31. 31)
      • 23. Watts, J.F., Abel, M., Perruchot, C., et al: ‘Segregation and crosslinking in urea formaldehyde/epoxy resins: a study by high-resolution XPS’, J. Electron. Spectrosc., 2001, 121, (1–3), pp. 233247.
    32. 32)
      • 8. Liang, X., Bao, W., Gao, Y.: ‘Decay-like fracture mechanism of silicone rubber composite insulator’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (1), pp. 110119.
    33. 33)
      • 14. Li, H., Charpentier, T., Du, J., et al: ‘Composite reinforcement: recent development of continuous glass fibers’, Int. J. Appl. Glass Sci., 2017, 8, (1), pp. 2336.
    34. 34)
      • 11. Kumosa, L.S., Kumosa, M.S., Armentrout, D.L.: ‘Resistance to brittle fracture of glass reinforced polymer composites used in composite (nonceramic) insulators’, IEEE Trans. Power Deliv., 2005, 20, (4), pp. 26572666.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5084
Loading

Related content

content/journals/10.1049/hve.2018.5084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading