http://iet.metastore.ingenta.com
1887

access icon openaccess Application of Parzen Window estimation for incipient fault diagnosis in power transformers

Loading full text...

Full text loading...

/deliver/fulltext/hve/3/4/HVE.2018.5061.html;jsessionid=f8oh1h083rrf2.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhve.2018.5061&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Dhote, N.K., Helonde, J.B.: ‘Diagnosis of power transformer faults based on five fuzzy ratio method’, WSEAS Trans. Power Syst., 2012, 6, (3), pp. 114125.
    2. 2)
      • 2. Agah, M., Lambertus, G.R., Sacks, R., et al: ‘High-speed MEMS-based gas chromatography’, J. Microelectromech. Syst., 2006, 15, (5), pp. 13711378.
    3. 3)
      • 3. Khan, S.A., Equbal, M.D., Islam, T.: ‘A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 590596.
    4. 4)
      • 4. Singh, S., Bandyopadhyay, M.N.: ‘Dissolved gas analysis technique for incipient fault diagnosis in power transformers: a bibliographic survey’, IEEE Electr. Insul. Mag., 2010, 26, (6), pp. 4146.
    5. 5)
      • 5. Ashkezari, A.D., Saha, T.K., Ekanayake, C., et al: ‘Evaluating the accuracy of different DGA techniques for improving the transformer oil quality interpretation’. The 21st Australasian Universities Power Engineering Conf. (AUPEC 2011), Brisbane, Australia, 25–28 September 2011.
    6. 6)
      • 6. Bakar, N.A., Abu-Siada, A., Islam, S.: ‘A review of dissolved gas analysis measurement and interpretation techniques’, IEEE Electr. Insul. Mag., 2014, 30, (3), pp. 3949.
    7. 7)
      • 7. Akbari, A., Setayeshmehr, A., Borsi, H., et al: ‘Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers’, IEEE Electr. Insul. Mag., 2010, 26, (6), pp. 4146.
    8. 8)
      • 8. Pal, M., Foody, G.M.: ‘Feature selection for classification of hyperspectral data by SVM’, IEEE Trans. Geosci. Remote Sens., 2010, 48, pp. 22972307.
    9. 9)
      • 9. Su, S., Mi, C., Lai, L.L., et al: ‘A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 593598.
    10. 10)
      • 10. Islam, S.M., Wu, T., Ledwich, G.: ‘A novel fuzzy logic approach to transformer fault diagnosis’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, (2), pp. 177186.
    11. 11)
      • 11. Naresh, R., Sharma, V., Vashisth, M.: ‘An integrated neural fuzzy approach for fault diagnosis of transformers’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 20172024.
    12. 12)
      • 12. Islam, M.M., Lee, G., Hettiwatte, S.N.: ‘A nearest neighbour clustering approach for incipient fault diagnosis of power transformers’, Electr. Eng., 2016, 99, pp. 11091119.
    13. 13)
      • 13. Parzen, E.: ‘On estimation of a probability density function and mode’, Ann. Math. Stat., 1962, 33, pp. 10651076.
    14. 14)
      • 14. Saha, T.K.: ‘Review of modern diagnostic techniques for assessing insulation condition in aged transformers’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (5), pp. 903917.
    15. 15)
      • 15. IEC, 60599 Ed. 2.1 Mineral oil-impregnated electrical equipment in service – guide to the interpretation of dissolved and free gases analysis, in, 1999.
    16. 16)
      • 16. Ghoneim, S.S.M., Taha, I.B.M.: ‘A new approach of DGA interpretation technique for transformer fault diagnosis’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 265274.
    17. 17)
      • 17. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformer, IEEE Std. C57.104, in, 1991.
    18. 18)
      • 18. Archambeau, C., Valle, M., Assenza, A., et al: ‘Assessment of probability density estimation methods: Parzen window and finite Gaussian mixtures’. IEEE Int. Symp. Circuits and Systems, Island of Kos, Greece, 21–24 May 2006.
    19. 19)
      • 19. Hu, Z., Xiao, M., Zhang, L., et al: ‘Mahalanobis distance based approach for anomaly detection of analog filters using frequency features and Parzen window density estimation’, J. Electron. Test., 2008, 24, (7), pp. 901907.
    20. 20)
      • 20. Overton, L.M., Padovani, G., Girolami, M.A.: ‘ParCrys: a Parzen window density estimation approach to protein crystallization propensity prediction’, Bioinformatics, 2008, 24, (7), pp. 901907.
    21. 21)
      • 21. Babu, V.S., Viswanath, P.: ‘An efficient and fast Parzen-window density based clustering method for large data sets’. First Int. Conf. Emerging Trends in Engineering and Technology, Nagpur, Maharashtra, India, 16–18 July 2008, pp. 531536.
    22. 22)
      • 22. Silverman, B.W.: ‘Density estimation: Chapman & Hall/CRC, number of iterations as parameter’ (London, 1986).
    23. 23)
      • 23. Noschese, S., Reichel, L.: ‘Inverse problems for regularization matrices’, Numer. Algorithms, 2012, 60, (4), pp. 531544.
    24. 24)
      • 24. Jain, A.K.: ‘Data clustering: 50 years beyond k-means’, Pattern Recognit. Lett., 2010, 31, pp. 651666.
    25. 25)
      • 25. Kanungo, T., Mount, D.M., Netanyahu, N.S., et al: ‘An efficient k-means clustering algorithm: analysis and implementation’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 881892.
    26. 26)
      • 26. Fei, S.-W., He, Y.: ‘A multi-layer KMC-RS-SVM classifier and DGA for fault diagnosis of power transformer’, Recent Pat. Comput. Sci., 2012, 10, (4), pp. 238243.
    27. 27)
      • 27. Li, S., Wu, G., Gao, B.: ‘Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 586595.
    28. 28)
      • 28. Islam, M.M., Lee, G., Hettiwatte, S.N.: ‘Application of a general regression neural network for health index calculation of power transformers’, Int. J. Electr. Power Energy Syst., 2017, 93, pp. 308315.
    29. 29)
      • 29. Islam, M.M., Lee, G., Hettiwatte, S.N.: ‘Calculating a health index for power transformers using a subsystem-based GRNN approach’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 19031912.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5061
Loading

Related content

content/journals/10.1049/hve.2018.5061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address