http://iet.metastore.ingenta.com
1887

access icon openaccess Review of accumulative failure of winding insulation subjected to repetitive impulse voltages

  • HTML
    152.5185546875Kb
  • PDF
    4.189705848693848MB
  • XML
    179.451171875Kb
Loading full text...

Full text loading...

/deliver/fulltext/hve/4/1/HVE.2018.5051.html;jsessionid=1durtuis1xbkz.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhve.2018.5051&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Standring, W.G., Hughes, R.C.: ‘Breakdown under impulse voltages of solid and liquid dielectrics in combination’, IEE Proc. Power Eng., 1956, 103, pp. 583597.
    2. 2)
      • 2. Kaufhold, M., Borner, G., Eberhardt, M., et al: ‘Failure mechanism of the inter-turn insulation of low voltage electric machines fed by pulse-controlled inverters’, IEEE Electr. Insul. Mag., 1996, 12, (5), pp. 916.
    3. 3)
      • 3. Tong, L., Wu, G., Wen, F.: ‘Mechanism and influencing factors of overvoltage on inverter-fed traction motor terminal’, J. Southwest Jiaotong Univ., 2005, 40, (5), pp. 673676, (in Chinese).
    4. 4)
      • 4. Wang, P., Cavallini, A., Montanari, G.C.: ‘Characteristics of PD under square wave voltages and their influence on motor insulation endurance’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 30793086.
    5. 5)
      • 5. Luo, Y., Wu, G., Liu, J., et al: ‘Characteristics and microscopic analysis of polyimide film used as turn insulation in inverter-fed motor’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 22372244.
    6. 6)
      • 6. Okabe, S., Ohno, T., Zaima, E., et al: ‘AC V–t and impulse V–N characteristics of shell-form transformer insulation model’, Electr. Eng. Jpn., 1996, 116, (44), pp. 4963.
    7. 7)
      • 7. Balaji, S.P., Merin Sheema, I.P., Krithika, G., et al: ‘Effect of repeated impulses on transformer insulation’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (6), pp. 20692073.
    8. 8)
      • 8. Balaji, S.P., Lavanya, L., Usa, S.: ‘Effect of repeated impulses on OIP’. IEEE Int. Conf. High Voltage Engineering and Application, Shanghai, China, 2012, pp. 558561.
    9. 9)
      • 9. Balaji, S.P., Usa, S.: ‘Life estimation of transformer insulation under repeated impulses’. IEEE Int. Conf. Condition Assessment Techniques in Electrical Systems, Kolkata, India, 2014, pp. 331334.
    10. 10)
      • 10. Yang, J., Cho, J., Lee, S.B., et al: ‘An advanced stator winding insulation quality assessment technique for inverter-fed machines’, IEEE Trans. Ind. Appl., 2008, 44, (2), pp. 555564.
    11. 11)
      • 11. Fabiani, D., Montanari, G.C., Cavallini, A., et al: ‘Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (3), pp. 393405.
    12. 12)
      • 12. Kaufhold, M., Aninger, H., Berth, M., et al: ‘Electrical stress and failure mechanism of the winding insulation in PWM-inverter-fed low-voltage induction motors’, IEEE Trans. Ind. Electron., 2000, 47, (2), pp. 396402.
    13. 13)
      • 13. Hudon, C., Amyot, N., Lebey, T., et al: ‘Testing of low-voltage motor turn insulation intended for pulse-width modulated applications’, IEEE Trans. Dielectr. Electr. Insul., 2002, 7, (6), pp. 783789.
    14. 14)
      • 14. Bonnett, H.: ‘Analysis of the impact of pulse-width modulated inverter voltage waveforms on AC induction motors’, IEEE Trans. Ind. Appl., 1996, 32, (2), pp. 386392.
    15. 15)
      • 15. Hayakawa, N., Morikawa, M., Okubo, H.: ‘Partial discharge inception and propagation characteristics of magnet wire for inverter-fed motor under surge voltage application’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (1), pp. 3945.
    16. 16)
      • 16. Hayakawa, N., Okubo, H.: ‘Partial discharge characteristics of inverter-fed motor coil samples under AC and surge voltage conditions’, IEEE Electr. Insul. Mag., 2003, 21, (1), pp. 510.
    17. 17)
      • 17. Cavallini, A., Fabiani, D., Montanari, G.C.: ‘A novel method to diagnose PWM-fed induction motors’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13131321.
    18. 18)
      • 18. Hayakawa, N., Inano, H., Nakamura, Y., et al: ‘Time variation of partial discharge activity leading to breakdown of magnet wire under repetitive surge voltage application’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 17011706.
    19. 19)
      • 19. Cavallini, A., Lindell, E., Montanari, G.C., et al: ‘Off-line PD testing of converter-fed wire-wound motors: when IEC TS 60034-18-41 may fail?’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (5), pp. 13851395.
    20. 20)
      • 20. IEC Standard, 60034-18-41: 2006: ‘Rotating electrical machines qualification and type tests for type I electrical insulation systems used in rotating electrical machines fed from voltage converters’. IEC Central Office, Switzerland, 2006.
    21. 21)
      • 21. Yang, J., Cho, J., Sang, B.L.: ‘An advanced stator winding insulation quality assessment technique for inverter-fed machines’. IEEE Trans. Ind. Appl., 2008, 44, (2), pp. 555564.
    22. 22)
      • 22. Tong, L., Wen, F., Wu, G., et al: ‘Calculation of transient voltage distribution in windings of inverter-fed traction motor’. High Volt. Eng., 2006, 32, (2), pp. 13, in Chinese.
    23. 23)
      • 23. Kikuchi, H., Hanawa, H.: ‘Inverter surge resistant enameled wire with nanocomposite insulating material’. IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 99106.
    24. 24)
      • 24. Guastavino, F., Ratto, A., Torello, E., et al: ‘Electrical aging tests on different nanostructured enamels subjected to severe voltage waveforms’. IEEE Int. Symp. Diagnostics for Electric Machines, Power Electron Drives, Bologna, Italy, 2011, pp. 278282.
    25. 25)
      • 25. Mbaye, A., Bellomo, J.P., Lebey, T., et al: ‘Electrical stresses applied to stator insulation in low-voltage induction motors fed by PWM drives’, IEE Proc. Electr. Power Appl., 1997, 144, (3), pp. 191198.
    26. 26)
      • 26. Zhou, K., Li, X.: ‘Aging characteristics of inter-turn insulation of form-wound stator windings of inverter-fed AC motors’, Electr. Mach. Power Syst., 2013, 41, (13), pp. 12801293.
    27. 27)
      • 27. Hyypio, D.B.: ‘Simulation of cable and winding response to steep-fronted voltage waves’. Industry Applications Conf., Orlando, FL, USA, 1995, pp. 800806.
    28. 28)
      • 28. Mihailal, V., Duchesne, S., Roger, D.: ‘A simulation method to predict the turn-to-turn voltage spikes in a PWM fed motor winding’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 16091615.
    29. 29)
      • 29. Fenger, M., Campbell, S.R., Pedersen, J.: ‘Motor winding problems caused by inverter drives’, IEEE Ind. Appl. Mag., 2003, 9, (4), pp. 2231.
    30. 30)
      • 30. Bidan, P., Lebey, T., Montseny, G., et al: ‘Transient voltage distribution in inverter fed motor windings: experimental study and modeling’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 92100.
    31. 31)
      • 31. Toliyat, H.A., Kliman, G.B.: ‘Handbook of electric motors’ (CRC Press, Boca Raton, FL, USA, 2004), p. 12.
    32. 32)
      • 32. Stone, G.C., Boulter, E.A., Culber, I.: ‘Electrical insulation for rotating machines. Electrical insulation for rotating machines: design, evaluation, aging, testing, and repair’ (Wiley-IEEE Press, Hoboken, NJ, USA, 2004), p. 65.
    33. 33)
      • 33. Luo, Y., Wu, G., Liu, J., et al: ‘PD characteristics and microscopic analysis of polyimide film used as turn insulation in inverter-fed motor’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 22372244.
    34. 34)
      • 34. Akram, S., Wu, G., Gao, G., et al: ‘Effect of surface discharge on nano filled polyimide film under square voltage’. IEEE Electrical Insulation Conf., Seattle, WA, USA, 2015, pp. 226229.
    35. 35)
      • 35. Du, B., Xing, Y.: ‘Surface potential behavior of fluorinated polyimide film under low temperature’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 121128.
    36. 36)
      • 36. Phung, B., Shao, S., Rahman, M., et al: ‘Partial discharge measurements in PWM inverter-driven low-voltage motors’. Australasian Universities Power Engineering Conf., Adelaide, SA, Australia, 2009, pp. 16.
    37. 37)
      • 37. IEC 60851-5-2011 Winding wires – test methods – part 5: electrical properties[S]. 2011.
    38. 38)
      • 38. IEC 60172-2015 test procedure for the determination of the temperature index of enamelled and tape wrapped winding wires[S]. 2015.
    39. 39)
      • 39. Gornicka, B., Prociow, K.: ‘Insulating system of inverter-driven motors based on nanocomposites’, Adv. Manuf. Process., 2009, 24, (10–11), pp. 12021206.
    40. 40)
      • 40. Guastavino, F., Coletti, G., Torello, E.: ‘Medium term aging characterization of enamelled for high frequency applications’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (3), pp. 524529.
    41. 41)
      • 41. Haq, S.U., Jayaram, S.H., Cherney, E.A.: ‘Evaluation of medium voltage enameled wire exposed to fast repetitive voltage pulses’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (1), pp. 194203.
    42. 42)
      • 42. Yin, W.: ‘Dielectric properties of an improved magnet wire for inverter-fed motors’, IEEE Electr. Insul. Mag., 1997, 13, (4), pp. 1723.
    43. 43)
      • 43. Yin, W.: ‘Failure mechanism of winding insulations in inverter-fed motors’, IEEE Electr. Insul. Mag., 1997, 13, (6), pp. 1823.
    44. 44)
      • 44. Stone, G.C., Heeswijk, R.G., Bartnikas, R.: ‘Electrical aging and electroluminescence in epoxy under repetitive voltage surges’, IEEE Trans. Electr. Insul., 2002, 27, (2), pp. 233244.
    45. 45)
      • 45. Guastavino, F., Dardano, A.: ‘Life tests on twisted pairs in presence of partial discharges: influence of the voltage waveform’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 4552.
    46. 46)
      • 46. Guastavino, F., Coletti, G., Torello, E.: ‘Twisted pairs specimens subjected to several waveform voltages in presence of partial discharges’. IEEE Report Conf. Electrical Insulation and Dielectric Phenomena, Cancun, Quintana Roo, Mexico, 2002, pp. 450453.
    47. 47)
      • 47. Wang, P., Cavallini, A., Montanari, G.C., et al: ‘Effect of rise time on PD pulse features under repetitive square wave voltages’. IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 245254.
    48. 48)
      • 48. Lindell, E., Bengtsson, T., Blennow, J., et al: ‘Influence of rise time on partial discharge extinction voltage at semi-square voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 141148.
    49. 49)
      • 49. Metzler, D.A., Hake, J.E.: ‘The effect of mechanical deformation and wire size on the ozone erosion resistance of inverter-duty magnet wires’. Proc. Electrical Insulation Conf. Electrical Manufacturing and Coil Winding Conf., Roseman, USA, 1997, pp. 389395.
    50. 50)
      • 50. Beeckman, R.J., Harber, J.J., Wentz, S.J.: ‘Studies on magnet wire degradation with inverter driven motors’. Proc. Electrical Insulation Conf. Electrical Manufacturing and Coil Winding Conf., Rosemont, IL, USA, 1997, pp. 383387.
    51. 51)
      • 51. Bonnett, H.: ‘A comparison between insulation systems available for PWM-inverter-fed motors’, IEEE Trans. Ind. Appl., 1996, 33, (5), pp. 13311341.
    52. 52)
      • 52. Bellomo, J.P., Lebey, T., Oraison, J.M., et al: ‘Electrical aging of stator insulation of low voltage rotating machines supplied by inverters’. IEEE Int. Symp. Electrical Insulation, Montreal, Quebec, Canada, 1996, vol. 1, pp. 210213.
    53. 53)
      • 53. Melfi, M., Sung, A.M.J., Bell, S., et al: ‘Effect of surge voltage rise time on the insulation of low-voltage machines fed by PWM converters’, IEEE Trans. Ind. Appl., 1998, 34, (4), pp. 766775.
    54. 54)
      • 54. Haq, S.U.: ‘A study on insulation problems in drive fed medium voltage induction motors’ (University of Waterloo, Waterloo, 2007).
    55. 55)
      • 55. Florkowska, B., Roehrich, J., Zydroi, P., et al: ‘Measurement and analysis of surface partial discharges at semi-square voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (4), pp. 990996.
    56. 56)
      • 56. Lindell, E., Bengtsson, T., Blennow, J., et al: ‘Measurement of partial discharges at rapidly changing voltages’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (3), pp. 823831.
    57. 57)
      • 57. Mazzanti, G., Montanari, G.C.: ‘Electrical aging and life models: the role of space charge’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 876890.
    58. 58)
      • 58. Morshuis, P.H.F.: ‘Partial discharge mechanisms’ (Delft University of Technology, Delft, Netherlands, 1993).
    59. 59)
      • 59. Farahani, M., Borsi, H., Gockenbach, E., et al: ‘Partial discharge and dissipation factor behavior of model insulating systems for high voltage rotating machines under different stresses’, IEEE Electr. Insul. Mag., 2005, 21, (5), pp. 519.
    60. 60)
      • 60. Gamez-Garcia, M.: ‘Synthesis reactions involving XLPE subjected to partial discharges’, IEEE Trans. Dielectr. Electr. Insul., 1987, EI-22, (2), pp. 199205.
    61. 61)
      • 61. Morshuis, P.H.F.: ‘Degradation of solid dielectrics due to internal partial discharge: some thoughts on progress made and where to go now’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 905913.
    62. 62)
      • 62. Katrin, T.: ‘Evaluation of surface changes in flat cavities due to ageing by means of phase-angle resolved partial discharge measurement’, J. Phys. D, Appl. Phys., 2000, 33, (33), p. 603.
    63. 63)
      • 63. Pietrini, G., Barater, D., Immovilli, F., et al: ‘Multi-stress lifetime model of the winding insulation of electrical machines’. 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 2017, pp. 268274.
    64. 64)
      • 64. Parpal, J., Crine, J., Dang, C.: ‘Electrical aging of extruded dielectric cables. A physical model’, IEEE Trans. Dielectr. Electr. Insul., 1997, 4, (2), pp. 197209.
    65. 65)
      • 65. Devins, J.C.: ‘Physics of partial discharges in solid dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 1984, 19, pp. 475495.
    66. 66)
      • 66. Morshuis, P.H.F., Smit, J.J.: ‘Partial discharges at DC voltage: their mechanism, detection and analysis’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (2), pp. 328340.
    67. 67)
      • 67. Fabiani, D., Montanari, G.C., Contin, A.: ‘Aging acceleration of insulating materials for electrical machine windings supplied by PWM in the presence and in the absence of partial discharges’. IEEE Seventh Int. Conf. Solid Dielectrics, Eindhoven, Netherlands, 2001, pp. 283286.
    68. 68)
      • 68. Mazzanti, G., Montanari, G.C., Dissado, L.A.A.: ‘Space charge life model for AC electrical aging of polymers’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (6), pp. 864875.
    69. 69)
      • 69. Guastavino, F., Tiemblo, P.: ‘Models for life prediction in surface PD on polymer films’, IEEE Trans. Dielectr. Electr. Insul., 1997, 4, (2), pp. 189196.
    70. 70)
      • 70. Zheng, F., Zhang, Y., Xiao, C.: ‘Relationship between breakdown in polymer dielectrics and space charge’, J. Mater. Sci. Eng., 2006, 24, (2), pp. 315316.
    71. 71)
      • 71. Lau, K., Vaughan, A., Chen, G., et al: ‘On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 340351.
    72. 72)
      • 72. Mazzanti, G., Montanari, G.C., Dissado, L.A.: ‘Elemental strain and trapped space charge in thermoelectrical aging of insulating materials: life modeling’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (6), pp. 966971.
    73. 73)
      • 73. Akram, S., Gao, G., Liu, Y., et al: ‘Degradation mechanism of A12O3 nano filled polyimide film due to surface discharge under square impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 33413349.
    74. 74)
      • 74. Montanari, G.C.: ‘Bringing an insulation to failure: the role of space charge’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 339364.
    75. 75)
      • 75. Dissado, L.A., Mazzanti, G., Montanari, G.C.: ‘The incorporation of space charge degradation in the life model for electrical insulating materials’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, pp. 11471158.
    76. 76)
      • 76. Mazzanti, G., Montanari, G.C., Dissado, L.A.: ‘A space charge life model for AC electrical aging of polymers’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, pp. 864875.
    77. 77)
      • 77. Wu, G., Cao, K., Luo, Y., et al: ‘Partial discharge characteristics of inter-turn insulation used for inverter-fed traction motor under bipolar impulses’, Sci. China E, 2012, 55, (8), pp. 23462354.
    78. 78)
      • 78. Liu, J., Wu, G., Zhou, L., et al: ‘Measurement for space charge and analysis on insulation aging under PWM voltage’. Int. Conf. Properties and Applications of Dielectric Materials, Harbin, China, 2009, pp. 903906.
    79. 79)
      • 79. Wu, G., Wu, J., Zhou, L., et al: ‘Microscopic view of aging mechanism of polyimide film under pulse voltage in presence of partial discharge’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 125132.
    80. 80)
      • 80. Yin, W., Bultemeier, K., Barta, D.: ‘Critical factors for early failure of magnet wires in inverter-fed motor’. IEEE Report Conf. Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, 1995, pp. 258261.
    81. 81)
      • 81. Sonerud, B., Bengtsson, T., Blennow, J., et al: ‘Dielectric heating in insulating materials subjected to voltage waveforms with high harmonic content’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (4), pp. 926933.
    82. 82)
      • 82. Toliyat, H.A., Kliman, G.B.: ‘Handbook of electric motors’ (Marcel Dekker, New York, 2004, 2nd edn.).
    83. 83)
      • 83. Liu, R., Jaksts, A.: ‘Breakdown processes in transformer insulation under LI voltages’. IEEE Int. Conf. Dielectric Liquids, Coimbra, Portugal, Portugal, 2005, pp. 7578.
    84. 84)
      • 84. Sun, P., Sima, W., Yang, M., et al: ‘Influence of thermal aging on the breakdown characteristics of transformer oil impregnated paper’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 33733381.
    85. 85)
      • 85. Wang, Z., Pang, L., Wang, T., et al: ‘Breakdown characteristics of oil–paper insulation under lightning impulse waveforms with oscillations’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 26202627.
    86. 86)
      • 86. Du, B., Jiang, J., Zhang, J., et al: ‘Dynamic behavior of surface charge on double-layer oil–paper insulation under pulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27122719.
    87. 87)
      • 87. Bossi, A., Dind, J.E., Frisson, J.M., et al: ‘An international survey on failures in large power transformers in service’, Electra, 1983, 88, pp. 2148.
    88. 88)
      • 88. Ralls, K.J.: ‘The reliability of transmission and distribution equipment’, Power Eng. J., 1995, 9, (3), pp. 109112.
    89. 89)
      • 89. Sun, P., Sima, W., Yang, M., et al: ‘Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 35823591.
    90. 90)
      • 90. Sima, W., Lan, X., Yang, Q., et al: ‘Statistical analysis on measured lightning overvoltage surges in a 110 kV air-insulated substation’, IET High Volt., 2016, 1, (1), pp. 1824.
    91. 91)
      • 91. Sima, W., Sun, P., Yang, M., et al: ‘Impact of time parameters of lightning impulse on the breakdown characteristics of oil–paper insulation’, IET High Volt., 2016, 1, (1), pp. 1824.
    92. 92)
      • 92. Sima, W., Sun, P., Yang, Q., et al: ‘Study on the accumulative effect of repeated lightning impulses on insulation characteristics of transformer oil impregnated paper’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 19331941.
    93. 93)
      • 93. Florkowski, M., Furgal, J., Pajak, P.: ‘Analysis of fast transient voltage distributions in transformer windings under different insulation conditions’, IEEE Trans. Dielectr. Electr. Insul., 2013, 19, (6), pp. 19911998.
    94. 94)
      • 94. Masdi, H., Mariun, N., Mohamed, A., et al: ‘Study of impulse voltage distribution in transformer windings’. IEEE Int. Conf. Power and Energy, Kuala Lumpur, Malaysia, 2011, pp. 379383.
    95. 95)
      • 95. Sabiha, N.A., Lehtonen, M.: ‘Lightning-induced overvoltages transmitted over distribution transformer with MV spark-gap operation – part I: high-frequency transformer model’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 24722480.
    96. 96)
      • 96. IEC 60060-1, high voltage test techniques – poart I: general definitions and test requirements[S]. 2010.
    97. 97)
      • 97. Okabe, S., Koutou, M., Kawashima, T., et al: ‘Dielectric characteristics of oil-filled transformer insulation models under non-standard lightning impulse voltages’. High Voltage Engineering Symp., London, UK, 1999, pp. 345348.
    98. 98)
      • 98. Okabe, S., Yuasa, S., Kaneko, S.: ‘Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms – analysis and generation circuit of non-standard lightning impulse waveforms in actual field’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (2), pp. 312360.
    99. 99)
      • 99. Okabe, S., Takami, J.: ‘Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms – method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 12881296.
    100. 100)
      • 100. Ueta, G., Kaneko, S., Okabe, S.: ‘Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms – breakdown characteristics under non-uniform electric field’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 14301438.
    101. 101)
      • 101. Ueta, G., Kaneko, S., Okabe, S.: ‘Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms – breakdown characteristics for double-frequency oscillations under non-uniform electric field’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (3), pp. 815825.
    102. 102)
      • 102. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms – breakdown characteristics under single-frequency oscillation waveforms and with bias voltages’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 17591766.
    103. 103)
      • 103. Ueta, G., Wada, J., Okabe, S.: ‘Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms – breakdown characteristics under single-frequency oscillation waveforms of 1.3 to 4.0 MHz’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (1), pp. 192199.
    104. 104)
      • 104. Ueta, G., Wada, J., Okabe, S.: ‘Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms – breakdown characteristics under single-frequency oscillation waveforms of 5.3 to 20.0 MHz’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (1), pp. 238245.
    105. 105)
      • 105. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms under non-uniform electric field – breakdown characteristics for single-frequency oscillation waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 640648.
    106. 106)
      • 106. Yuasa, S., Suzuki, H., Okabe, S.: ‘Insulation characteristics of GIS under nonstandard lightning-impulse oscillations: insulation characteristics under single-frequency oscillations with various frequencies and damping ratios’, Electr. Eng. Jpn., 2003, 145, (3), pp. 4349.
    107. 107)
      • 107. Okabe, S., Koto, M., Kato, K., et al: ‘Insulation characteristics of GIS under oscillatory waveforms of non-standard lightning impulse’. High Voltage Engineering Symp., London, UK, 1999, pp. 269272.
    108. 108)
      • 108. Ueta, G., Wada, J., Okabe, S.: ‘Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms - method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 17241733.
    109. 109)
      • 109. Okabe, S.: ‘Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse-insulation characteristics for non-standard lightning impulse waveforms with oscillations’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (3), pp. 679688.
    110. 110)
      • 110. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms – breakdown characteristics in the presence of bias voltages under non-uniform electric field’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 112121.
    111. 111)
      • 111. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms – method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 505514.
    112. 112)
      • 112. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms under non-uniform electric field – breakdown characteristics for single-frequency oscillation waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 263273.
    113. 113)
      • 113. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveforms – breakdown characteristics under double-frequency oscillation waveforms and single-frequency oscillation waveforms in the presence of bias voltage’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (5), pp. 17991809.
    114. 114)
      • 114. Wada, J., Ueta, G., Okabe, S.: ‘Evaluation of breakdown characteristics of N2 gas for non-standard lightning impulse waveforms – breakdown characteristics under double-frequency oscillation waveforms and pressure–distance characteristics’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (5), pp. 18101818.
    115. 115)
      • 115. Carrus, A., Cinieri, E., Fumi, A., et al: ‘Short tail lightning impulse behaviour of medium voltage line insulation’, IEEE Trans. Power Deliv., 1999, 14, (1), pp. 218226.
    116. 116)
      • 116. Ancajima, A., Carrus, A., Cinieri, E., et al: ‘Breakdown characteristics of air spark-gaps stressed by standard and short-tail lightning impulses: experimental results and comparison with time to sparkover models’, J. Electrost., 2007, 65, pp. 282288.
    117. 117)
      • 117. Ancajima, A., Baran, I., Costea, M., et al: ‘Breakdown characteristics of MV distribution and electric traction lines insulators stressed by standard and short tail lightning impulses’. IEEE Conf. Power Technology, St. Petersburg, Russia, 2005, pp. 17.
    118. 118)
      • 118. Rakov, V.A.: ‘Lightning parameters for engineering applications’. Asia-Pacific Int. Symp. Electromagnetic Compatibility, Beijing, China, 2010, pp. 11201123.
    119. 119)
      • 119. Husseina, M., Janischewskyjb, W., Milewskia, M., et al: ‘Current waveform parameters of CN tower lightning return strokes’, J. Electrost., 2004, pp. 149162.
    120. 120)
      • 120. Lu, C.: ‘Research on the damage and characteristic of oil–paper insulation under the accumulative effect of switching impulse voltage’ (Chongqing University, Chongqing, 2014), in Chinese.
    121. 121)
      • 121. Okabe, S.: ‘Voltage–time and voltage-number characteristics of insulation elements with oil-filled transformers in EHV and UHV classes’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 436444.
    122. 122)
      • 122. CIGRE Report: insulation co-ordination related to internal insulation of gas insulated systems with SF6 and nitrogen/SF6 gas mixtures under AC condition. Working group C4. 302, No. 360, 2008.
    123. 123)
      • 123. Okabe, S.: ‘Insulation properties and degradation mechanism of insulating spacers in gas insulated switchgear (GIS) for repeated/long voltage application’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (1), pp. 101110.
    124. 124)
      • 124. Liu, Q., Wang, Z., Dyer, P.: ‘Accumulative effect on streamer propagation of lightning impulses on oil/pressboard interface’. 2011 IEEE Int. Conf. Dielectric Liquids, Trondheim, Norway, 2011.
    125. 125)
      • 125. Liu, Q., Wang, Z.: ‘Streamer characteristic and breakdown in synthetic and natural ester transformer liquids under standard lightning impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (1), pp. 285294.
    126. 126)
      • 126. Sima, W., Sun, P., Yang, Q., et al: ‘Accumulative effect of oil–paper insulation system under multiple lightning impulse voltage’. IEEE Conf. Electrical Insulation and Dielectric Phenomena, Shenzhen, 2013.
    127. 127)
      • 127. Sima, W., Sun, P., Yang, Q., et al: ‘Dielectric characteristics analysis of oil–paper insulation under lightning impulse voltage’. 18th Int. Symp. High Voltage Engineering, Seoul, 2013.
    128. 128)
      • 128. Sun, P., Sima, W., Yang, M., et al: ‘Accumulative effect of repeated lightning impulses on transformer insulation: mechanism analysis’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 24302437.
    129. 129)
      • 129. Huang, M., Zhou, Y., Chen, W., et al: ‘Influence of voltage reversal on space charge behavior in oil–paper insulation’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 331339.
    130. 130)
      • 130. Li, W., Li, J., Wang, X., et al: ‘Physicochemical origin of space charge dynamics for aged XLPE cable insulation’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 809820.
    131. 131)
      • 131. Zhou, Y., Huang, M., Chen, W., et al: ‘Space charge behavior evolution with thermal aging of oil–paper insulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (3), pp. 13811388.
    132. 132)
      • 132. Damamme, G., Gressus, C.L., De Reggi, A.S.: ‘Space charge characterization for the 21st century’, IEEE Trans. Dielectr. Electr. Insul., 1997, 4, (5), pp. 558584.
    133. 133)
      • 133. Rakov, V.A., Uman, M.A.: ‘Lightning physics and effects’ (Cambridge University Press, New York, 2003), p. 108.
    134. 134)
      • 134. Sima, W., Sun, P., Yang, M., et al: ‘Effect of space charge on the accumulative characteristics of oil–paper insulation under repeated lightning impulses’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 24832490.
    135. 135)
      • 135. Sun, P.: ‘Study on accumulative effect of repeated lightning impulse on oil–paper insulation and its influence factors’ (Chongqing University, Chongqing, 2016), in Chinese.
    136. 136)
      • 136. Sun, P., Sima, W., Zhang, D., et al: ‘Impact of wavefront time of microsecond impulse on the breakdown voltage of oil impregnated paper: mechanism analysis’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (5), pp. 17061715.
    137. 137)
      • 137. Okabe, S.: ‘Voltage-time and voltage-number characteristics of insulation elements with large scale oil-immersed transformers under field-use conditions’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (6), pp. 12611271.
    138. 138)
      • 138. Okabe, S., Yuasa, S., Kaneko, S., et al: ‘Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms – method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (1), pp. 4251.
    139. 139)
      • 139. Okabe, S., Yuasa, S., Kaneko, S.: ‘Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms – breakdown characteristics for non-standard lightning impulse waveforms associated with lightning surges’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (2), pp. 407415.
    140. 140)
      • 140. Sima, W., Wu, J., Sun, P., et al: ‘Breakdown characteristics of oil-impregnated paper and influential factors for damped alternating oscillation waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 20792087.
    141. 141)
      • 141. Cui, Y., Wu, G., Wu, C., et al: ‘Possible mechanism of electrical treeing and breakdown for polyimide nanocomposite film used in inverter-fed motor’. IEEE Electrical Insulation and Dielectric Phenomena, West Lafayette, IN, USA, 2011, pp. 14.
    142. 142)
      • 142. Li, S., Min, D., Wang, W., et al: ‘Linking traps to dielectric breakdown through charge dynamics for polymer nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27772785.
    143. 143)
      • 143. Yin, Y., Dong, X., Chen, J., et al: ‘High field electrical conduction in the nanocomposite of low-density polyethylene and nano-SiOx’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 10641071.
    144. 144)
      • 144. Tu, Y., Zheng, Z., Li, X., et al: ‘Grain – boundary and thermally stimulated current characteristics of Y2O3 – doped ZnO varistor’, J. Am. Ceram. Soc., 2013, 96, (11), pp. 35183522.
    145. 145)
      • 145. Tu, Y., Chen, J., Wang, S., et al: ‘Moisture migration in oil-impregnated film insulation under thermal ageing’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 11351141.
    146. 146)
      • 146. Tu, Y., Sun, W., Yue, C., et al: ‘Research of insulation properties of polymer materials using in oil-filled transformers under high temperature’. IEEE Conf. Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 2011, pp. 583586.
    147. 147)
      • 147. Zha, J., Song, H., Dang, Z., et al: ‘Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films’, Appl. Phys. Lett., 2008, 93, (19), p. 2190.
    148. 148)
      • 148. Yan, W., Phung, B., Han, Z., et al: ‘Plasma polymer-coated on nanoparticles to improve dielectric and electrical insulation properties of nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 548555.
    149. 149)
      • 149. Yan, W., Han, Z., Phung, B., et al: ‘Silica nanoparticles treated by cold atmospheric-pressure plasmas improve the dielectric performance of organic–inorganic nanocomposites’, ACS Appl. Mater. Interfaces, 2012, 4, (5), pp. 26372642.
    150. 150)
      • 150. Li, H., Liu, G., Liu, B., et al: ‘Dielectric properties of polyimide/Al2O3, hybrids synthesized by in-situ polymerization’, Mater. Lett., 2007, 61, (7), pp. 15071511.
    151. 151)
      • 151. Li, J., Du, B., Wang, F., et al: ‘The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids’, Phys. Lett. A, 2016, 380, (4), pp. 604608.
    152. 152)
      • 152. Du, B., Li, J., Wang, F., et al: ‘Influence of monodisperse Fe3O4 nanoparticle size on electrical properties of vegetable oil-based nanofluids’. J. Nanomater., 2015, 2015, (1), p. 1.
    153. 153)
      • 153. Liao, R., Lv, C., Yang, L., et al: ‘The insulation properties of oil-impregnated insulation paper reinforced with nano-TiO2’, J. Nanomater., 2013, 2013, (1), p. 1.
    154. 154)
      • 154. Liao, R., Lv, C., Yang, L., et al: ‘Space charge behavior in oil-impregnated insulation paper reinforced with nano-TiO2’, Bioresources, 2013, 8, (4), pp. 56555665.
    155. 155)
      • 155. Sun, P., Sima, W., Zhang, D., et al: ‘Effects of impulse waveform parameters on the breakdown characteristics of nano-TiO2 modified transformer oil’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (5), pp. 16511659.
    156. 156)
      • 156. He, L., Liao, R., Lv, Y., et al: ‘Effect of nano-Al2O3 on the thermal aging physicochemical properties of insulating paper’. IEEE Int. Conf. Condition Monitoring and Diagnosis, Xi'an, China, 2016, pp. 254257.
    157. 157)
      • 157. Sun, P., Sima, W., Jiang, X., et al: ‘Failure characteristics and mechanism of nano-modified oil-impregnated paper subjected to repeated impulse voltage’, Nanomaterials, 2018, 8, (7), p. 5042018.
    158. 158)
      • 158. Sun, P., Sima, W., Jiang, X., et al: ‘Failure of nano-modified oil impregnated paper under repeated impulse voltage: effects of nano-TiO2 on space charge characteristics’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (6), pp. 21032111.
    159. 159)
      • 159. Sun, P., Sima, W., Chen, J., et al: ‘An application area of C60: overall improvement of insulating oil's electrical performance’, Appl. Phys. Lett., 2018, 112, (14), p. 142902.
    160. 160)
      • 160. Sun, P., Sima, W., Jiang, X., et al: ‘Failure characteristics and mechanism of nano-modified oil impregnated paper subjected to repeated impulse voltage’, Nanomaterials, 2018, 8, (7), p. 504.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5051
Loading

Related content

content/journals/10.1049/hve.2018.5051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address