Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Semiconductor loss calculation of DC–DC modular multilevel converter for HVDC interconnections

DC–DC modular multilevel converter (DC–DC MMC) is an attractive candidate for high-voltage DC (HVDC) interconnections since it can provide the required voltage matching, galvanic isolation and flexible power control abilities. The semiconductor loss of such a DC–DC MMC is a major concern for both system evaluation and parameter design. However, it cannot be measured directly since it is out of the precision range of the high-voltage measuring equipment, and thus, mathematical analysis is considered as a feasible alternative. This paper proposes an accurate off-line loss calculation method for DC–DC MMC modulated by fundamental frequency modulation. Based on the characteristics of the modulation, the switching moments along with the instantaneous voltage and current can be calculated exactly, and the conduction loss and switching loss of each submodule can be expressed in a mathematical way. The calculation results are compared with the simulation results from a comprehensive switched model and show good accuracy performance within a relative error of  ± 2% under different operating conditions.

References

    1. 1)
      • 5. Kish, G.J., Ranjram, M., Lehn, P.W.: ‘A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 148162.
    2. 2)
      • 4. Wei, Q., Wu, B., Xu, D., et al: ‘Model predictive control of capacitor voltage balancing for cascaded modular DC-DC converters’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 752762.
    3. 3)
      • 7. Zhang, X., Green, T.C., Junyent-Ferre, A.: ‘A new resonant modular multilevel step-down DC–DC converter with inherent-balancing’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 7888.
    4. 4)
      • 16. Cui, Y., Chen, Y., Chen, Y., et al: ‘DC–DC modular multilevel converter with high frequency transformer for transportation applications’. IEEE Conf. and Exposition on Transportation Electrification Asia-Pacific, ITEC Asia-Pacific, Beijing, China, August 2014, pp. 16.
    5. 5)
      • 8. Luth, T., Merlin, M.M.C., Green, T.C., et al: ‘High-frequency operation of a DC/AC/DC system for HVDC applications’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 41074115.
    6. 6)
      • 17. Konstantinou, G., Pou, J., Ceballos, S., et al: ‘Switching frequency analysis of staircase-modulated modular multilevel converter and equivalent PWM techniques’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 2836.
    7. 7)
      • 11. Xing, Z., Ruan, X., You, H., et al: ‘Soft-switching operation of isolated modular DC/DC converters for application in HVDC grids’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 27532766.
    8. 8)
      • 18. Kenzelmann, S., Rufer, A., Vasiladiotis, M., et al: ‘A versatile DC–DC converter for energy collection and distribution using the modular multilevel converter’. European Conf. on Power Electronics and Applications, EPE, Birmingham, UK, August 2011, pp. 110.
    9. 9)
      • 10. Gowaid, I.A., Adam, G.P., Massoud, A.M., et al: ‘Modular multilevel structure of a high power dual active bridge DC transformer with stepped two-level output’. European Conf. Power Electronics and Applications, EPE'14-ECCE Europe, Lappeenranta, Finland, August 2014, pp. 110.
    10. 10)
      • 15. Chen, Y., Cui, Y., Tao, Y., et al: ‘High-fundamental-frequency modulation for the DC–DC modular multilevel converter (MMC) with low switching frequency and predicted-based voltage balance strategy’. IEEE Conf. and Exposition on Transportation Electrification Asia-Pacific, ITEC Asia-Pacific, Beijing, China, August 2014, pp. 16.
    11. 11)
      • 26. Yang, L., Li, Y., Li, Z., et al: ‘Loss optimization of MMC by second-order harmonic circulating current injection’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 57395753.
    12. 12)
      • 27. Huang, S., Liao, W., Liu, P., et al: ‘Analysis and calculation on switching frequency and switching losses of modular multilevel converter with maximum sub-module capacitor voltage deviation’, IET Power Electron., 2016, 9, (2), pp. 17554535.
    13. 13)
      • 23. Tu, Q., Xu, Z.: ‘Power loss evaluation for modular multilevel converter with junction temperature feedback’. IEEE Power and Energy Society General Meeting, Detroit, USA, July 2011, pp. 17.
    14. 14)
      • 13. Cui, Y., Chen, Y., Kang, Y., et al: ‘Comparison study of the fundamental switching frequency modulation for DC–DC modular multilevel converter’. IEEE Energy Conversion Congress and Exposition, ECCE, Montreal, Canada, September 2015, pp. 67986803.
    15. 15)
      • 25. Zhang, Z., Xu, Z., Xue, Y.: ‘Valve loss evaluation based on piecewise analytical method for MMC-HVDC links’, IEEE Trans. Power Del., 2014, 29, (3), pp. 13541362.
    16. 16)
      • 14. Kenzelmann, S., Rufer, A., Dujic, D., et al: ‘Isolated DC/DC structure based on modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 8998.
    17. 17)
      • 2. Sadigh, A., Dargahi, V., Abarzadeh, M., et al: ‘Reduced DC voltage source flying capacitor multicell multilevel inverter: analysis and implementation’, IET Power Electron., 2014, 7, (2), pp. 439450.
    18. 18)
      • 28. Wang, H., Tang, G., He, Z., et al: ‘Analytical approximate calculation of losses for modular multilevel converters’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 24552465.
    19. 19)
      • 24. Rodrigues, S., Papadopoulos, A., Kontos, E., et al: ‘Steady-state loss model of half-bridge modular multilevel converters’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 24152425.
    20. 20)
      • 20. Chen Y. Cui, Y., Wang, X., et al: ‘Design and implementation of the low computational burden phase-shifted modulation for DC–DC modular multilevel converter’, IET Power Electron., 2016, 9, (2), pp. 256269.
    21. 21)
      • 1. Shi, Y., Li, R., Xue, Y., et al: ‘High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 328339.
    22. 22)
      • 22. Rohner, S., Bernet, S., Hiller, M, et al: ‘Modulation, loss, and semiconductor requirements of modular multilevel converters’, IEEE Tran. Ind. Electron., 2010, 57, (8), pp. 26332642.
    23. 23)
      • 21. Freytes, J., Gruson, F., Delarue, P., et al: ‘Loss estimation method by simulation for the modular multilevel converter’. IEEE Electrical Power and Energy Conf. (EPEC), Ontario, Canada, October 2015, pp. 332338.
    24. 24)
      • 9. Gowaid, I.A., Adam, G.P., Massoud, A.M., et al: ‘Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 108123.
    25. 25)
      • 12. Gowaid, I.A., Adam, G.P., Ahmed, S., et al: ‘Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC–DC transformers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54395457.
    26. 26)
      • 6. Engel, S.P., Stieneker, M., Soltau, N., et al: ‘Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 124137.
    27. 27)
      • 19. Kenzelmann, S., Dujic, D., Canales, F., et al: ‘Modular DC/DC converter: comparison of modulation methods’. Power Electronics and Motion Control Conf., EPE/PEMC, Novi Sad, Serbia, September 2012, pp. LS2a.1-1LS2a.1–7.
    28. 28)
      • 3. Liu, L., Li, H., Xue, Y., et al: ‘Decoupled active and reactive power control for large-scale grid-connected photovoltaic systems using cascaded modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 176187.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5039
Loading

Related content

content/journals/10.1049/hve.2018.5039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address