access icon openaccess Power flow control scheme for multiport power electronics transformers

Development of power electronics transformers (PETs) has made dc distribution and hybrid ac/dc systems a competitive solution for future network expansion. This study focuses on the functions of a multiport PET interfacing medium-voltage and low-voltage networks. A comprehensive power flow control scheme based on a globalised multiport transmission model of the PET and droop control is derived. This allows for a coordinated energy exchange between the ports of the PET, which enables autonomous operation. Simulations of the proposed approach in a hybrid ac/dc distribution network with different levels of distributed generation and loads verify the effectiveness of the method.

Inspec keywords: power convertors; distribution networks; power electronics; power transformers; power grids; load flow control; AC-DC power convertors; distributed power generation

Other keywords: multiport power electronics transformers; hybrid ac/dc distribution network; competitive solution; globalised multiport transmission model; low-voltage networks; distributed generation; multiport PET interfacing medium-voltage; hybrid ac/dc systems; droop control; future network expansion; comprehensive power flow control scheme; coordinated energy exchange

Subjects: Power convertors and power supplies to apparatus; Distribution networks; Control of electric power systems

References

    1. 1)
      • 18. Li, Z., Wang, P., Chu, Z., et al: ‘Research on medium- and high-voltage smart distribution grid oriented power electronic transformer’, Power Syst. Technol., 2013, 37, (9), pp. 25922601.
    2. 2)
      • 20. Baranwal, R., Castelino, G.F., Iyer, K., et al: ‘A dual-active-bridge-based single-phase AC to DC power electronic transformer with advanced features’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 313331.
    3. 3)
      • 19. Sabahi, M., Hosseini, S.H., Sharifian, M.B., et al: ‘Zero-voltage switching bidirectional power electronic transformer’, IET Power Electron., 2010, 3, (5), pp. 818828.
    4. 4)
      • 6. Li, T., Gole, A.M., Zhao, C.: ‘Harmonic instability in MMC-HVDC converters resulting from internal dynamics’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 17381747.
    5. 5)
      • 24. Lan, Z., Tu, C., Xiao, F., et al: ‘The power control of power electronic transformer in hybrid AC-DC microgrid’, Trans. China Electrotech. Soc., 2015, 30, (23), pp. 5057.
    6. 6)
      • 34. Wai, R.J., Zhang, Q.Q., Wang, Y.: ‘A novel voltage stabilization and power sharing control method based on virtual complex impedance for off-grid microgrid’, IEEE Trans. Power Electron., 2018, doi: 10.1109/TPEL.2018.2831673.
    7. 7)
      • 9. Ronan, E.R., Sudhoff, S.D., Glover, S.F., et al: ‘A power electronic-based distribution transformer’, IEEE Trans. Power Deliv., 2002, 17, (2), pp. 537543.
    8. 8)
      • 30. Perez, M.A., Bernet, S., Rodriguez, J., et al: ‘Circuit topologies, modeling, control schemes and applications of modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 417.
    9. 9)
      • 33. Islam, S., Agarwal, S., Shyam, A.B., et al: ‘Ideal current-based distributed control to compensate line impedance in DC microgrid’, IET Power Electron., 2018, 11, (7), pp. 11781186.
    10. 10)
      • 35. Zhang, T., Wei, T., Yin, J.: ‘An improved droop control strategy for the DVR parallel system’. 2017 12th IEEE Conf. on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 2017, pp. 11321136.
    11. 11)
      • 21. Gu, C., Zheng, Z., Xu, L., et al: ‘Modeling and control of a multiport power electronic transformer (PET) for electric traction applications’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 915927.
    12. 12)
      • 38. Loh, P.C., Blaabjerg, F.: ‘Autonomous control of distributed storages in microgrids’. Proc. 8th IEEE Int. Conf. Power Electronics and ECCE Asia (ICPE & ECCE), Jeju, South Korea, May/June 2011, pp. 536542.
    13. 13)
      • 29. Konstantinou, G., Zhang, J., Ceballos, S., et al: ‘Comparison and evaluation of sub-module configurations in modular multilevel converters’. 2015 IEEE 11th Int. Conf. on Power Electronics and Drive Systems, Sydney, Australia, June 2015, pp. 958963.
    14. 14)
      • 11. Fan, B., Li, Y., Wang, K., et al: ‘Hierarchical system design and control of an MMC-based power-electronic transformer’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 238247.
    15. 15)
      • 1. Zhou, X., Lu, Z., Liu, Y., et al: ‘Development models and key technologies of future grid in China’, Proc. CSEE, 2014, 34, (29), pp. 49995008.
    16. 16)
      • 25. Marchiano, M., Rayworth, D.M.J., Alegria, E., et al: ‘Power generation load sharing using droop control in an island system’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 18901898.
    17. 17)
      • 14. Manjrekar, M.D., Kieferndorf, R., Venkataramanan, G.: ‘Power electronic transformers for utility applications’. Proc. of the 2000 IEEE Industry Application Society Annual Meeting, Rome, Italy, October 2000, pp. 24962502.
    18. 18)
      • 17. Li, Z., Gao, F., Xu, F., et al: ‘A simple electric energy router circuit for exchanging active power of AC grids’. IECON 2016 – 42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, October 2016, pp. 52015204.
    19. 19)
      • 4. Li, J., Konstantinou, G., Wickramasinghe, H.R., et al: ‘Investigation of MMC-HVDC operating region by circulating current control under grid imbalances’, Electr. Power Syst. Res., 2017, 152, pp. 211222.
    20. 20)
      • 31. Xu, G., Sha, D., Xu, Y., et al: ‘Hybrid-bridge-based DAB converter with voltage match control for wide voltage conversion gain application’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 13781388.
    21. 21)
      • 12. Shojaei, A., Joos, G.: ‘A modular multilevel converter-based power electronic transformer’. IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, September 2013, pp. 367371.
    22. 22)
      • 10. Lai, J., Maitra, A., Mansoor, A., et al: ‘Multilevel intelligent universal transformer for medium voltage applications’. IEEE Industry Application Society Annual Meeting, Kowloon, Hong Kong, China, October 2005, pp. 18931899.
    23. 23)
      • 8. Falcones, S., Mao, X., Ayyanar, R.: ‘Topology comparison for solid state transformer implementation’. IEEE PES General Meeting, Minneapolis, MN, USA, July 2010, pp. 2529.
    24. 24)
      • 13. Kang, M., Enjeti, P.N., Pitel, I.J.: ‘Analysis and design of electronic transformers for electric power distribution system’, IEEE Trans. Power Electron., 1999, 14, (6), pp. 11331141.
    25. 25)
      • 3. Konstantinou, G., Pou, J., Ceballos, S., et al: ‘Control of circulating currents in modular multilevel converters through redundant voltage levels’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 77617769.
    26. 26)
      • 15. Li, Z., Wang, P., Chu, Z., et al: ‘A three-phase 10 kVAC-750 VDC power electronic transformer for smart distribution grid’. 15th European Conf. on Power Electronics and Applications (EPE), Lille, France, 2013, pp. 19.
    27. 27)
      • 37. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous operation of hybrid microgrid with AC and DC subgrids’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22142223.
    28. 28)
      • 5. Beddard, A., Barnes, M., Preece, R.: ‘Comparison of detailed modeling techniques for MMC employed on VSC-HVDC schemes’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 579589.
    29. 29)
      • 32. Corzine, K.A., Sudhoff, S.D., Whitcomb, C.A.: ‘Performance characteristics of a cascaded two-level converter’, IEEE Trans. Energy Convers., 1999, 14, (3), pp. 433439.
    30. 30)
      • 2. Ghadiri, A., Haghifam, M.R., Larimi, S.M.M.: ‘Comprehensive approach for hybrid AC/DC distribution network planning using genetic algorithm’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 38923902.
    31. 31)
      • 7. Zhao, C., Dujic, D., Mester, A.: ‘Power electronic traction transformer-medium voltage prototype’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 32573268.
    32. 32)
      • 26. Mumtaz, F., Syed, M.H., Hosani, M.A., et al: ‘A novel approach to solve power flow for islanded microgrids using modified Newton Raphson with droop control of DG’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 493503.
    33. 33)
      • 16. Contreras, J.P., Ramirez, J.M.: ‘Multi-fed power electronic transformer for use in modern distribution systems’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 15321541.
    34. 34)
      • 28. Johnson, B.K., Lasseter, R.H., Alvarado, F.L., et al: ‘Expandable multiterminal dc systems based on voltage droop’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 19261932.
    35. 35)
      • 27. Manna, D., Goswami, S.K., Chattopadhyay, P.K.: ‘Droop control for micro-grid operations including generation cost and demand side management’, CSEE J. Power Energy Syst., 2017, 3, (3), pp. 232242.
    36. 36)
      • 23. Shojaei, A., Joos, G.: ‘A modular solid state transformer with a single-phase medium-frequency transformer’. IEEE Electrical Power & Energy Conf. (EPEC), Halifax, NS, Canada, August 2013, pp. 15, 2123.
    37. 37)
      • 22. Wu, Q., Wang, G., Feng, J., et al: ‘A novel comprehensive control scheme of modular multilevel converter-based power electronic transformer’. 2015 5th Int. Conf. on DRPT, Changsha, China, November 2015, pp. 22532258.
    38. 38)
      • 36. IEC/TS 62749 Assessment of power quality characteristics of electricity supplied by public networks.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5034
Loading

Related content

content/journals/10.1049/hve.2018.5034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading