access icon openaccess Metal particle movement and distribution characteristics under AC voltage and ball-plane electrodes

Metal particles, difficult to be eliminated in gas-insulated metal-enclosed switchgear (GIS), can cause GIS discharge and breakdown between electrodes, or flashover on the insulator surface. It influences the development of ultra-high voltage (UHV) projects. Therefore, the work optimised the model of metal particle movement under AC voltage, studying the metal particle movement and distribution characteristics between ball-plane electrodes through experiment and simulation. Under AC voltage, the particle jumps on a small scale on the plane surface. With the increase of voltage, the jump amplitude increases. However, the collision frequency decreases until the particle collides with the ball electrode. When the initial phase angle of power changes, the particle-moving pattern is symmetrical in the angle ranging from 0 to 180°, and from 180 to 360°. The collision frequency changes slightly with the increase of jump amplitude when the angel ranges from 0 to 120°.

Inspec keywords: electrochemical electrodes; gas insulated switchgear; discharges (electric); flashover; insulators

Other keywords: ultra-high voltage projects; insulator surface; ball-plane electrodes; plane surface; collision frequency; ball electrode; gas-insulated metal-enclosed switchgear; GIS breakdown; particle collides; GIS discharge; flashover; AC voltage; metal particle distribution characteristics; particle-moving pattern; jump amplitude

Subjects: Dielectric breakdown and discharges; Switchgear; Electrochemical conversion and storage; Power line supports, insulators and connectors

References

    1. 1)
      • 18. Lebedev, N.N., Skalskaya, P.: ‘Force acting on a conducting sphere in the field of a parallel plane condenser’, Sov. Phys. Tech. Phys., 1962, 7, pp. 268270.
    2. 2)
      • 1. Chakrabarti, A.K., van Heeswijk, R.G., Srivastava, K.D.: ‘Free particle-initiated 60 Hz breakdown at a spacer surface in a gas-insulated bus’, IEEE Trans. Electr. Insul., 1989, 24, (4), pp. 549560.
    3. 3)
      • 2. Wu, Z., Zhang, Q., Song, J., et al: ‘Study on phase resolved partial discharge pattern of free conductive particle defects in GIS’, High Volt. Eng., 2018, 44, (5), pp. 18, (in Chinese).
    4. 4)
      • 8. Anis, H., Srivastava, K.D.: ‘Particle-initiated breakdowns in compressed gas insulation under time-varying voltages’, IEEE Trans. Ind. Appl., 1981, PAS-100, (8), pp. 36943702.
    5. 5)
      • 14. Lee, K.H., Baek, M.K., Hong, S.G., et al: ‘Numerical analysis and experiment of floating conductive particle motion due to contact charging in high-voltage system’, IEEE Trans. Magn., 2016, 52, (3), pp. 72084047208407.
    6. 6)
      • 4. Sun, J., Dai, Q., Bian, K., et al: ‘Forced movement process and vibration characteristics of free conductive particle’, Trans. China Electrotech. Soc., 2018, 33, (22), pp. 52275235.
    7. 7)
      • 6. Morcos, M.M., Anis, H., Srivastava, K.D.: ‘Metallic particle movement, corona, and breakdown in compressed gas insulated transmission line systems’, IEEE Trans. Ind. Appl., 1991, 27, (5), pp. 816823.
    8. 8)
      • 7. Hara, M., Adachi, K., Tobata, H., et al: ‘Particle-initiated breakdown characteristics of conical insulator In N2 Gas and N2/02 mixture under DC voltage’, IEEE Trans. Electr. Insul., 1987, EI-22, (1), pp. 8796.
    9. 9)
      • 5. Lee, H., Egashira, T., Hara, M.: ‘Improvement of particle-initiated DC flashover characteristics by using electrode and surface shapes in SF6 gas’. Proc. of the 3rd Int. Conf. on Properties and Applications of Dielectric Materials, Tokyo, Japan, 1991, pp. 529532.
    10. 10)
      • 25. Zhang, Q., Jia, J., Yang, L., et al: ‘Charging mechanism of metallic conducting particle on a dielectrically coated electrode in gas insulated system’, J. Xi'an Jiaotong Univ., 2004, 38, (12), pp. 12871291, (in Chinese).
    11. 11)
      • 3. Wang, J., Ni, X., Wang, Z., et al: ‘Trapping probability and designing optimization of particle trap in DC GIL’, High Volt. Eng., 2018, 44, (2), pp. 40904097, (in Chinese).
    12. 12)
      • 20. Boggs, S.A., Nojima, K., Yasuoka, T.: ‘Computation of horzontal force normal to the axis of a spheroidal conducting particle in a field gradient’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (3), pp. 16491651.
    13. 13)
      • 16. Sakai, K., Tsuru, S., Abella, D.L., et al: ‘Conducting particle motion and particle-initiated breakdown in dc electric field between diverging conducting plates in atmospheric air’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (1), pp. 122130.
    14. 14)
      • 12. Khan, Y., Sakai, K., Lee, E., et al: ‘Motion behavior and deactivation method of free-conducting particle around spacer between diverging conducting plates under dc voltage in atmospheric air’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (3), pp. 444457.
    15. 15)
      • 19. Jia, J., Zha, W., Zhang, Q., et al: ‘Influence of metal inserted polytetrafluorethylene spacer on the motion of conducting particle under AC voltage’, Proc. CSEE, 2008, 28, (10), pp. 136141, (in Chinese).
    16. 16)
      • 24. Jia, J., Zhang, Q., Shi, X., et al: ‘Conducting particle near PTFE spacer under AC voltage’, Trans. China Electrotech. Soc., 2008, 23, (5), pp. 418424, (in Chinese).
    17. 17)
      • 21. Morcos, M.M., Zhang, S., Srivastava, K.D., et al: ‘Dynamics of metallic particle contaminants in GIS with dielectric-coated electrodes’, IEEE Trans. Power. Deliv., 2000, 15, (2), pp. 455460.
    18. 18)
      • 26. Jia, J., Tao, F., Yang, L., et al: ‘Motion analysis of spherical free conducting particle in non-uniform electric field of GIS under DC voltage’, Proc. CSEE, 2006, 26, (8), pp. 106111, (in Chinese).
    19. 19)
      • 23. Jia, J., Zha, W., Yang, L., et al: ‘Motion behavior of spherical conducting particle around PTFE insulator under DC voltage’, High Volt. Eng., 2006, 32, (11), pp. 1821, (in Chinese).
    20. 20)
      • 17. Nojima, K., Zhang, X., Sato, M., et al: ‘Forces affecting metallic particle motion in GIS’. Conf. Proc. of ISEIM 2014, Niigata, Japan, 2014, pp. 132135.
    21. 21)
      • 9. Morcos, M.M., Anis, H., Srivastava, K.D.: ‘Metallic particle movement, corona and breakdown in compressed gas insulated transmission line systems’. Conf. Record of the IEEE Industry Applications Society Annual Meeting, San Diego, CA, USA, 1989, Vol. 2, pp. 22202232.
    22. 22)
      • 15. Wu, Z., Zhang, Q., Song, J., et al: ‘Simulation and motion analysis of spherical free conducting particle between coaxial electrodes’. 1st Int. Conf. on Electrical Materials and Power Equipment, Xi'an, China, 2017, pp. 324327.
    23. 23)
      • 11. Sakai, K., Abella, D.L., Khan, Y., et al: ‘Experimental studies of free conducting wire particle behavior between non-parallel plane electrodes with ac voltages in air’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (3), pp. 418424.
    24. 24)
      • 10. Sakai, K., Abella, D.L., Suehiro, J., et al: ‘Mode of free-conducting particle motion and particle-triggered breakdown mechanism in non-uniform field gaps’. 2000 Conf. on Electrical Insulation and Dielectric Phenomena, Victoria, BC, Canada, 2000, pp. 389392.
    25. 25)
      • 22. Sun, J., Chen, W., Li, Z., et al: ‘Research on experiment and simulation of charged spherical metal particle collision characteristic under DC electric field’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 31173125.
    26. 26)
      • 13. Sakai, K., Abella, D.L., Khan, Y., et al: ‘Theoretical and experimental studies for spherical free-conducting particle behavior between non-parallel plane gectrodes with ac voltages in air’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (3), pp. 405418.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5018
Loading

Related content

content/journals/10.1049/hve.2018.5018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading