access icon openaccess Diffuse discharges in SF6 and mixtures of SF6 with H2, formed by nanosecond voltage pulses in non-uniform electric field

Results of experimental study of nanosecond diffuse discharge in SF6 and gas mixtures of SF6 with H2, D2 and C2H6 are presented. The aim of this work is to study parameters of discharge between two extended electrodes with a small radius of curvature in SF6 and SF6 with additives. It was shown that diffuse discharge can be formed in SF6 at elevated pressure between blade electrodes with length of 30 cm. It was also confirmed that in a sharply non-uniform electric field a beam of runaway electrons is generated and that the gap breakdown occurs due to ionisation waves which begin on electrodes with small radius of curvature. Laser action in the infrared spectral region was obtained in SF6–H2 (D2, C2H6) mixtures. The laser output up to 110 mJ was easily achieved which corresponds to ultimate intrinsic efficiency (with respect to deposited energy) of 10%.

Inspec keywords: plasma diagnostics; gas mixtures; discharges (electric); electrodes; electric fields; hydrogen

Other keywords: ionisation waves; nanosecond voltage pulses; nonuniform electric field; infrared spectral region; size 30.0 cm; laser action; nanosecond diffuse discharge; blade electrodes; elevated pressure; extended electrodes; gas mixtures; curvature radius; SF; SF6-H2; runaway electrons; gap breakdown

Subjects: Electric discharges; Design of specific laser systems; Optical (ultraviolet, visible, infrared) plasma diagnostic techniques

References

    1. 1)
      • 15. Vil'tovskii, P.O., Lomaev, M.I., Panchenko, A.N., et al: ‘Lasing in the UV, IR and visible spectral ranges in a runaway-electron-preionised diffuse discharge’, Quantum Electron., 2013, 43, (7), pp. 605609. Available at https://doi.org/10.1070/QE2013v043n07ABEH014928.
    2. 2)
      • 11. Babich, L.P., Loiko, T.V.: ‘Runaway electrons at high voltage nanosecond discharges in sulfur hexafluoride at pressure of 1 atm’, Tech. Phys., 1991, 61, (9), pp. 153155, WOS: A1991HJ27000024.
    3. 3)
      • 31. Byszewski, W.W., Reinhold, G.: ‘X-ray diagnostics of runaway electrons in fast gas discharges’, Phys. Rev. A, 1982, 26, (5), pp. 28262831, doi: https://doi.org/10.1103/PhysRevA.26.2826.
    4. 4)
      • 25. Fujii, K., Yamada, M., Tanaka, A., et al: ‘Emission spectrum of partial discharge light in SF6 gas’. IEEE Int. Symp. on Electrical Insulation, Baltimore, MD USA, June 1992, pp. 332335, doi:10.1109/ELINSL.1992.246988.
    5. 5)
      • 16. Mesyats, G.A., Korovin, S.D., Rostov, V.V., et al: ‘The RADAN series of compact pulsed power generators and their application’, Proc. IEEE, 2004, 92, (7), pp. 11661179, doi: 10.1109/JPROC.2004.829005.
    6. 6)
      • 34. Ponomarenko, V.O., Tolmachev, G.N.: ‘Spectra of X-ray emission from low-pressure gas discharge with runaway electrons’, Tech. Phys. Lett., 2012, 38, (8), pp. 747749. Available at https://doi.org/10.1134/S1063785012080226.
    7. 7)
      • 7. Richeboeuf, L., Pasquiers, S., Legentil, M., et al: ‘The influence of H2 and C2H6 molecules on discharge equilibrium and F-atom production in a phototriggered HF laser using SF6’, J. Phys. D, Appl. Phys., 1998, 31, (4), pp. 373389, doi:10.1088/0022-3727/31/4/007.
    8. 8)
      • 4. Apollonov, V.V., Belevtsev, A.A, Kazantsev, S.Yu., et al: ‘Self-initiated volume discharge in nonchain HF lasers based on SF6–hydrocarbon mixtures’, Quantum Electron., 2000, 30, (3), pp. 207214. Available at https://doi.org/10.1070/QE2000v030n03ABEH001688.
    9. 9)
      • 26. Lemzadmi, A., Bonifaci, N., Denat, A., et al: ‘Light emission from corona discharge in SF6 and SF6/N2 gas mixtures at high pressure’, Eur. Phys. J., Appl. Phys., 2006, 33, (3), pp. 213219. Available at https://doi.org/10.1051/epjap:2006025.
    10. 10)
      • 8. Panchenko, A.N., Tarasenko, V.F.: ‘On the efficiency of nonchain electric-discharge HF (DF) lasers’, Russ. Phys. J., 2004, 47, (5), pp. 571573. Available at https://doi.org/10.1023/B:RUPJ.0000046333.48514.89.
    11. 11)
      • 2. Mao, M., Wang, Y.N., Bogaerts, A.: ‘Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/Ar plasmas used for deep silicon etching applications’, J. Phys. D, Appl. Phys., 2011, 44, (43), p. 435202, doi:10.1088/0022-3727/44/43/435202.
    12. 12)
      • 6. Apollonov, V.V., Kazantsev, S.Yu., Oreshkin, V.F., et al: ‘Feasibility of increasing the output energy of a nonchain HF (DF) laser’, Quantum Electron., 1997, 27, (3), pp. 207209. Available at https://doi.org/10.1070/QE1997v027n03ABEH000913.
    13. 13)
      • 17. Beloplotov, D.V., Tarasenko, V.F., Sorokin, D.A., et al: ‘Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field’, JETP Lett., 2017, 106, (10), pp. 653658. Available at https://doi.org/10.1134/S0021364017220064.
    14. 14)
      • 33. Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., et al: ‘Characteristic radiation of nitrogen under subnanosecond breakdown in a highly nonuniform electric field near the positive-polarity electrode’, Plasma Phys. Rep., 2017, 43, (7), pp. 792795. Available at https://doi.org/10.1134/S1063780X17070121.
    15. 15)
      • 3. Seung-Ju, O., Hyo-Chang, L., Chin-Wook, C.: ‘A study on plasma parameters in Ar/SF6 inductively coupled plasma’, Phys. Plasmas, 2017, 24, (1), p. 013512. Available at https://doi.org/10.1063/1.4974036.
    16. 16)
      • 23. Jabbour, Z.J., Blanks, K.A, Martus, K.E., et al: ‘Continuous ultraviolet emissions produced by electron impact on SF6 and NF3’, J. Chem. Phys., 1988, 88, (7), pp. 42524256. Available at https://doi.org/10.1063/1.453833.
    17. 17)
      • 19. Panchenko, A.N., Orlovskii, V.M., Tarasenko, V.F., et al: ‘Efficient oscillation regimes of an HF laser pumped by a non-chain chemical reaction initiated by a self-sustained discharge’, Quantum Electron., 2003, 33, (5), pp. 401407. Available at https://doi.org/10.1070/QE2003v033n05ABEH002424.
    18. 18)
      • 29. Raizer, Yu.P.: ‘Gas discharge physics’ (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).
    19. 19)
      • 30. Kunhardt, E.E., Byszewski, W.W.: ‘Development of overvoltage breakdown at high gas pressure’, Phys. Rev. A, 1980, 21, (6), pp. 20692077, doi: https://doi.org/10.1103/PhysRevA.21.2069.
    20. 20)
      • 22. Yoshida, S., Kojima, H., Hayakawa, N., et al: ‘Light emission spectrum depending on propagation of partial discharge in SF6’. IEEE Int. Symp. on Electrical Insulation, Vancouver, BC, Canada, June 2008, pp. 365368, doi: 10.1109/ELINSL.2008.4570350.
    21. 21)
      • 12. Baksht, E.Kh., Burachenko, A.G., Erofeev, M.V., et al: ‘Nanosecond discharge in sulfur hexafluoride and the generation of an ultrashort avalanche electron beam’, Laser Phys., 2008, 18, (6), pp. 732737, doi: 10.1134/S1054660X08060078.
    22. 22)
      • 14. Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., et al: ‘High-pressure runaway-electron-preionized diffuse discharges in a nonuniform electric field’, Tech. Phys., 2010, 55, (2), pp. 210218. Available at https://doi.org/10.1134/S1063784210020088.
    23. 23)
      • 24. Blanks, K.A., Becker, K.: ‘Optical emissions in the wavelength region 2000–6000 Å produced by electron impact dissociation of NF3, CF4 and SF6’, J. Phys. B, At. Mol. Phys., 1987, 20, (22), pp. 61576164. Available at https://doi.org/10.1088/0022-3700/20/22/024.
    24. 24)
      • 28. Lomaev, M.I., Beloplotov, D.V., Tarasenko, V.F., et al: ‘Breakdown features of a high-voltage nanosecond discharge initiated with runaway electrons at subnanosecond voltage pulse rise time’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 18331840, doi: 10.1109/TDEI.2015.005008.
    25. 25)
      • 21. Tarasenko, V.F., Panchenko, A.N.: ‘Efficient discharge-pumped non-chain HF and DF lasers’, Proc. of SPIE, 2006, 6101, p. 61011P. Available at https://doi.org/10.1117/12.643226.
    26. 26)
      • 27. Panchenko, A.N., Tarasenko, V.F., Panchenko, N.A.: ‘Pulsed gas lasers pumped by a runaway electron initiated discharge’, Russ. Phys. J., 2017, 60, (8), pp. 13031307. Available at https://doi.org/10.1007/s11182-017-1212-6.
    27. 27)
      • 13. Zhang, C., Tarasenko, V.F., Shao, T., et al: ‘Generation of super-short avalanche electron beams in SF6’, Laser Part. Beams, 2014, 32, (2), pp. 331341, doi: 10.1017/S0263034614000147.
    28. 28)
      • 18. Makarov, M., Menager, L., Pasquiers, S., et al: ‘Time resolved imaging study of phototriggered discharges in SF6 and Ne/SF6 mixtures’, IEEE Trans. Plasma Sci., 1999, 27, (1), pp. 126127, doi: 10.1109/27.763084.
    29. 29)
      • 5. Velikanov, S.D., Domazhirov, A.P., Zaretskiy, N.A., et al: ‘High-power pulse repetitive HF(DF) laser with a solid-state pump generator’, Quantum Electron., 2015, 45, (11), pp. 989992. Available at https://doi.org/10.1070/QE2015v045n11ABEH015889.
    30. 30)
      • 9. Noggle, R.C., Krider, Е.Р., Wayland, J.R.: ‘A search for X rays from helium and air discharges at atmospheric pressure’, J. Appl. Phys., 1968, 39, (10), pp. 47464748. Available at https://doi.org/10.1063/1.1655832.
    31. 31)
      • 10. Tarasova, L.V., Khudyakova, L.N.: ‘X rays from pulsed discharges in air’, Soviet Phys. Tech. Phys., 1970, 14, (2), pp. 11481161, Bib. Code: 1970SPTP...14.1148T.
    32. 32)
      • 1. Bortnik, I.M.: ‘The physical properties and the electrical strength of sulfur hexafluoride’ (Energoatomizdat, Moscow, 1988) (in Russian).
    33. 33)
      • 32. Kozyrev, A.V., Tarasenko, V.F., Baksht, E.Kh., et al: ‘Soft X-ray generation and its role in breakdown of air gap at elevated pressures’, Tech. Phys. Lett., 2011, 37, (11), pp. 10541057, doi: https://doi.org/10.1134/S1063785011110253.
    34. 34)
      • 20. Tarasenko, V.F., Baksht, E.Kh., Rybka, D.V., et al: ‘Transition of a diffuse discharge to a spark phase at nanosecond breakdown of high-pressure nitrogen and air in a nonuniform electric field’, Tech. Phys., 2013, 58, (8), pp. 11151121. Available at https://doi.org/10.1134/S1063784213080240.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5006
Loading

Related content

content/journals/10.1049/hve.2018.5006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading