http://iet.metastore.ingenta.com
1887

access icon openaccess Accelerated ultraviolet weathering investigation on micro-/nano-SiO2 filled silicone rubber composites

  • PDF
    4.640988349914551MB
  • HTML
    66.841796875Kb
  • XML
    71.3330078125Kb
Loading full text...

Full text loading...

/deliver/fulltext/hve/3/4/HVE.2018.5004.html;jsessionid=1jx96evln31ei.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhve.2018.5004&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Amin, M., Amin, S.: ‘Aging research on SIR and TPE insulators (an overview)’, Rev. Adv. Mater. Sci., 2014, 36, pp. 2939.
    2. 2)
      • 2. Xidong, L., Shaowu, W., Ju, F..: ‘The development and study of composite insulators in China’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 586594.
    3. 3)
      • 3. Ali, M., Hackam, R.: ‘Effects of saline water and temperature on surface properties of HTV silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13681378.
    4. 4)
      • 4. Venkatesulu, B., Thomas, M.J.: ‘Long-term accelerated multistress aging of composite outdoor polymeric insulators’. IEEE Int. Conf. Solid Dielectr (ICSD), Winchester, UK, August 2006, pp. 188201.
    5. 5)
      • 5. Amin, S.: ‘Comparative natural aging of thermoplastic elastomeric and silicon rubber insulators in Pakistan’, J. Elastom. Plast., 2012, 44, (2), pp. 115125.
    6. 6)
      • 6. CIGRE WG D1.14: ‘Material properties for non-ceramic outdoor insulation: state of art’ (Technical Brochure, 2004), 255, pp. 2835.
    7. 7)
      • 7. Gubanski, S. M., Vlastos, A.E.: ‘Wettability of naturally aged silicone and EPDM composite insulators’, IEEE Trans. Power Delivery, 1990, 5, (3), pp. 15271535.
    8. 8)
      • 8. Yoshimura, N., Kumagai, N.: ‘Electrical and environmental aging of silicone rubber used for outdoor insulation’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 632650.
    9. 9)
      • 9. Sundararajan, R., Mohammed, A., Chaipanit, N., et al: ‘In-service aging and degradation of 345 kV EPDM transmission line insulators in a coastal environment’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (2), pp. 348361.
    10. 10)
      • 10. Sundararajan, R.: ‘Modified IEC 5000-h multistress aging of 28-kV thermoplastic elastomeric insulators’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 10791085.
    11. 11)
      • 11. IEC 61109: ‘Composite insulators for AC overhead lines with a nominal voltage greater than 1000 V-definitions and acceptance criteria’, 1992.
    12. 12)
      • 12. Amin, S., Amin, M., Sundrarajan, R.: ‘Comparative multi stress aging of thermoplastic elastomeric and silicone rubber insulators in Pakistan’. IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), Quebec, QC, Canada, February 2008, pp. 293296.
    13. 13)
      • 13. Youn, B.H., Huh, C.S.: ‘Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 10151024.
    14. 14)
      • 14. Amin, M., Ahmed, M.: ‘Effect of UV radiation on HTV-silicone rubber insulators with moisture’. IEEE Int. Multitopic Conf. (INMIC), Lahore, Pakistan, December 2007, pp. 15.
    15. 15)
      • 15. Khan, Y.: ‘Degradation of high voltage polymeric insulators in arid desert's simulated environmental conditions’, Am. J. Eng. Appl. Sci., 2009, 2, pp. 438445.
    16. 16)
      • 16. Khan, Y., Al-Arainy, A.A., Malik, N.H., et al: ‘Loss and recovery of hydrophobicity of EPDM insulators in simulated arid desert environment’. Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Chengdu, China, March 2010, pp. 14.
    17. 17)
      • 17. Venkatesulu, B., Thomas, M.J.: ‘Long-term accelerated weathering of outdoor silicone rubber insulators’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 418424.
    18. 18)
      • 18. Haddad, G., Gupta, R.K., Wong, K.L.: ‘Visualization of multi-factor changes in HTV silicone rubber in response to environmental exposures’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 21902198.
    19. 19)
      • 19. Ghunem, R.A., Jayaram, S.H., Cherney, E.A.: ‘Erosion of silicone rubber composites in the AC and DC inclined plane tests’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 229236.
    20. 20)
      • 20. Venkatesulu, B., Thomas, M.J.: ‘Erosion resistance of alumina-filled silicone rubber nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (2), pp. 615624.
    21. 21)
      • 21. Joshi, M., Bhattacharyya, A.: ‘Nanotechnology: a new route to high-performance functional textiles’, Text. Prog., 2011, 43, (3), pp. 155233.
    22. 22)
      • 22. Mahmoud, K.: ‘The effect of reinforcing fillers on the UV light stability of elastomers’, Paint Coat. Ind., 2000, 16, (5), pp. 106110.
    23. 23)
      • 23. Lan, L., Wen, X., Cai, D.: ‘Corona ageing tests of RTV and RTV nanocomposite materials’. IEEE Int. Conf. Solid Dielectr (ICSD), Toulouse, France, July 2004, pp. 804807.
    24. 24)
      • 24. Lan, L., Yao, G., Wang, H.L., et al: ‘Characteristics of corona aged nano-composite RTV and HTV silicone rubber’. IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP), Shenzhen, China, October 2013, pp. 804808.
    25. 25)
      • 25. Nazir, M.T., Phung, B.T., Hoffman, M.: ‘Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 28042815.
    26. 26)
      • 26. Nazir, M.T., Phung, B.T.: ‘Ultraviolet weathering resistance performance of micro/nano silica filled silicone rubber composites for outdoor insulation’. IEEE Int. Conf. on Condition Monitoring and Diagnosis (CMD), Xi'an, China, September 2016, pp. 10351038.
    27. 27)
      • 27. Nazir, M.T., Phung, B.T.: ‘Effect of AC corona discharge on aging of silicone rubber nanocomposites at high altitude’. IEEE Electrical Insulation Conf. (EIC), Seattle, WA, USA, June 2015, pp. 488491.
    28. 28)
      • 28. Nazir, M.T., Phung, B.T., Hoffman, M.: ‘Effect of AC corona discharge on hydrophobic properties of silicone rubber nanocomposites’. IEEE Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, July 2015, pp. 412415.
    29. 29)
      • 29. Nazir, M.T., Phung, B.T.: ‘AC corona resistance performance of silicone rubber composites with micro/nano silica fillers’. IEEE Int. Conf. on Dielectrics (ICD), Montpellier, France, July 2016, vol. 2, pp. 681684.
    30. 30)
      • 30. Nazir, M.T., Phung, B.T., Yu, S., et al: ‘Resistance against AC corona discharge of micro-ATH/nano-Al2O3 co-filled silicone rubber composites’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 657667.
    31. 31)
      • 31. El-Hag, A.H., Simon, L.C., Jayaram, S.H., et al: ‘Erosion resistance of nano-filled silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 122128.
    32. 32)
      • 32. https://www.q-lab.com/documents/public/d6f438b3-dd28-4126-b3fd-659958759358.pdf.
    33. 33)
      • 33. http://bjzybt2014.en.b2b168.com/.
    34. 34)
      • 34. Grassie, N., Scott, G.: ‘Polymer degradation and stabilization’ (Cambridge University Press, New York, 1985).
    35. 35)
      • 35. Hillborg, H., Gedde, U.W.: ‘Hydrophobicity changes in silicone rubbers’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 703717.
    36. 36)
      • 36. Delman, A.D., Landy, M., Simms, B.B.: ‘Photodecomposition of polydimethylsiloxane’, J. Polym. Sci. A, Polym. Chem., 1969, 7, pp. 33753386.
    37. 37)
      • 37. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    38. 38)
      • 38. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2018.5004
Loading

Related content

content/journals/10.1049/hve.2018.5004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address