Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Fast AC reactor-based fault current limiters application in distribution network

Almost all of the fault current limiters (FCLs) have a negligible voltage drop during normal operation mode of the power system and show considerable impedance during the fault period. In addition, the most of the FCLs employ a reactor to limit the fault current, which carrying a DC current and named DC reactor-based FCL (DRFCL) or carrying AC current named AC reactor-based FCL (ARFCL). Here, a novel ARFCL is introduced for radial distribution networks protection. Then, the ARFCL performance on the limitation of the fault current is compared with DRFCL in a simple radial distribution network. The MATLAB software is used to simulate both FCLs performance and their effect on the fault current. The laboratory prototype of the ARFCL is built and tested for the evaluation of the ARFCL performance during normal and fault operation modes. The simulation and experimental results show the superiority of ARFCL to control the fault current, fast, and set the point of common coupling voltage in an acceptable range.

References

    1. 1)
      • 10. Hagh, M.T., Abapour, M.: ‘Nonsuperconducting fault current limiter with controlling the magnitudes of fault currents’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 613619.
    2. 2)
      • 5. Fereidouni, A.R., Vahidi, B., Mehr, T.H.: ‘The impact of solid state fault current limiter on power network with wind-turbine power generation’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 11881196.
    3. 3)
      • 13. Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., et al: ‘Bridge-type solid-state fault current limiter based on AC/DC reactor’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 200209.
    4. 4)
      • 19. Sarmiento, H.G.: ‘A fault current limiter based on an LC resonant circuit: design, scale model and prototype field tests’. Bulk Power System Dynamics and Control – VII. Revitalizing Operational Reliability, 2007 iREP Symp., Charleston, SC, USA, 19–24 August 2007, pp. 15.
    5. 5)
      • 16. Meyer, C., De Doncker, R.W.: ‘LCC analysis of different resonant circuits and solid-state circuit breakers for medium-voltage grids’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 14141420.
    6. 6)
      • 28. Bhargava, B., Khan, A.H., Imece, A.F., et al: ‘Effectiveness of pre-insertion inductors for mitigating remote overvoltages due to shunt capacitor energization’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 12261238.
    7. 7)
      • 26. Das, J.C.: ‘Analysis and control of large-shunt-capacitor-bank switching transients’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 14441451.
    8. 8)
      • 1. Choudhury, A.B., Roy, D., Iwahara, M.: ‘Field distribution and performance analysis of a passive magnetic fault-current limiter under transient conditions’, Electr. Power Compon. Syst., 2009, 37, (11), pp. 11951207.
    9. 9)
      • 27. Skeans, D.W.: ‘Recent development in capacitor switching transient reduction’. Proc. T&D World Exposition Substation Section, New Orleans, LA, March 1995, pp. 113.
    10. 10)
      • 3. Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., et al: ‘A novel solid-state fault current-limiting circuit breaker for medium-voltage network applications’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 236244.
    11. 11)
      • 29. Abdulsalam, S.G., Xu, W.: ‘Sequential phase energisation technique for capacitor switching transient reduction’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 596602.
    12. 12)
      • 22. Tseng, S.-T., Chen, J.-F.: ‘Capacitor energising transient limiter for mitigating capacitor switch-on transients’, IET Electr. Power Appl., 2011, 5, (3), pp. 260266.
    13. 13)
      • 11. Naderi, S.B., Jafari, M., Hagh, M.T.: ‘Controllable resistive type fault current limiter (CR-FCL) with frequency and pulse duty-cycle’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 1119.
    14. 14)
      • 24. IEEE Standard 1036-2010: ‘IEEE guide for application of shunt power capacitors’, January2011.
    15. 15)
      • 20. Tseng, H.-T., Chen, J.-F.: ‘Single-DC reactor-type transient limiter for reducing three-phase power capacitor switching transients’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17451757.
    16. 16)
      • 14. Zeineldin, H.H., Xiao, W.: ‘Optimal fault current limiter sizing for distribution systems with DG’. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011, pp. 15.
    17. 17)
      • 6. Ghanbari, T., Farjah, E.: ‘Development of an efficient solid-state fault current limiter for microgrid’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 18291834.
    18. 18)
      • 17. Arai, H., Inaba, M., Ishigohka, T., et al: ‘Fundamental characteristics of superconducting fault current limiter using LC resonance circuit’, IEEE Trans. Appl. Supercond., 2006, 16, (2), pp. 642645.
    19. 19)
      • 25. Blooming, T.M., Carnovale, D.J.: ‘Capacitor application issues’, IEEE Trans. Ind. Appl., 2008, 44, (4), pp. 10131026.
    20. 20)
      • 23. Smith, L.M.: ‘A practical approach in substation capacitor bank applications to calculating, limiting, and reducing the effects of transient currents’, IEEE Trans. Ind. Appl., 1995, 31, (4), pp. 721724.
    21. 21)
      • 4. Al-Shaher, M., Saleh, A.S., Sabry, M.M.: ‘Estimation of fault location and fault resistance for single line-to-ground faults in multi-ring distribution network using artificial neural network’, Electr. Power Compon. Syst., 2009, 37, (7), pp. 697713.
    22. 22)
      • 9. Boenig, H.J., Paice, D.: ‘Fault current limiter using a superconducting coil’, IEEE Trans. Magn., 1983, 19, (3), pp. 10511053.
    23. 23)
      • 18. Martins Lanes, M., Braga, H.A.C., Barbosa, P.G.: ‘Fault current limiter based on resonant circuit controlled by power semiconductor devices’, IEEE Latin America Trans. (Revista IEEE America Latina), 2007, 5, (5), pp. 311320.
    24. 24)
      • 15. Radmanesh, H., Fathi, H., Gharehpetian, G.B.: ‘Series transformer-based solid state fault current limiter’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 19831991.
    25. 25)
      • 8. Ueda, T., Morita, M., Arita, H., et al: ‘Solid-state current limiter for power distribution system’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 17961801.
    26. 26)
      • 30. Lu, Z., Jiang, D., Wu, Z.: ‘A new topology of fault-current limiter and its parameters optimization’. IEEE 34th Annual Power Electronics Specialist Conf., 2003. PESC '03. 2003, vol. 1, 15–19 June 2003, pp. 462465.
    27. 27)
      • 2. Moravej, Z., Abdoos, A.A., Sanaye-Pasand, M.: ‘A new approach based on S-transform for discrimination and classification of inrush current from internal fault currents using probabilistic neural network’, Electr. Power Compon. Syst., 2010, 38, (10), pp. 11941210.
    28. 28)
      • 7. Abramovitz, A., Smedley, K.M.: ‘Survey of solid-state fault current limiters’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27702782.
    29. 29)
      • 21. Fei, W., Zhang, Y., Lu, Z.: ‘Novel bridge-type FCL based on self-turnoff devices for three-phase power systems’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 20682076.
    30. 30)
      • 12. Firouzi, M., Gharehpetian, G.B.: ‘Improving fault ride-through capability of fixed-speed wind turbine by using bridge-type fault current limiter’, IEEE Trans. Energy Convers., 2013, 28, (2), pp. 361369.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0195
Loading

Related content

content/journals/10.1049/hve.2017.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address