access icon openaccess PD measurements, failure analysis, and control in high-power IGBT modules

Increased voltage blocking capability and the development of packaging technology for IGBTs can enhance the local electric field that may become large enough to increase partial discharges (PDs) within the module. The study presents a survey on (i) simulation the electric field within an IGBT module; (ii) current standards for evaluation of the insulation systems of IGBTs; (iii) PD detection and localisation methods as well as other diagnostic and quality control test methods about IGBTs; and (iv) various methods for PD control in an IGBT module. The survey shows remarkable technical gaps in all four areas. More sophisticated numerical and theoretical techniques are needed to model complicated geometries, e.g. extremely sharp edges of the copper metallisation and protrusions in the substrate, and composite non-linear field grading materials. There is no model to take into account defects in the gel and on the ceramic substrate. IEC 61287-1 cannot sufficiently assess the behaviour of PDs on IGBT module under the actual operating conditions exposing fast rise pulse-width modulation-like voltages. There is no agreement on the exact origin and location of PDs in the module with relying on measured phase-resolved PD patterns. PD control methods using non-linear grading materials are not mature enough.

Inspec keywords: partial discharges; partial discharge measurement; electric fields; semiconductor device reliability; failure analysis; quality control; insulated gate bipolar transistors; silicone insulation; frequency response

Other keywords: electrical insulation failure; frequency 60.0 Hz; insulation systems; failure analysis; PD control methods; power frequency; insulating silicone gel; electric field calculations; quality control test methods; IGBT module reliability; high-power insulated gate bipolar transistors; fast rise pulse-width modulation-like voltages; frequency 50 Hz; diagnostic control test methods; local electric field; phase-resolved PD patterns; insulating systems; PD measurements; high-power IGBT modules; copper metallisation; ceramic substrate; composite nonlinear field grading materials; IEC 61287-1

Subjects: Insulated gate field effect transistors; Reliability; Dielectric breakdown and discharges; Organic insulation

References

    1. 1)
      • 33. Petterteig, A., Pittini, R., Hernes, M., et al: ‘Pressure tolerant power IGBTs for subsea applications’. Proc. European Power Electronics and Applications Conf., Barcelona, Spain, 8–10 September 2009.
    2. 2)
      • 45. Jayasundere, N., Smith, B.V: ‘Permittivity for binary piezoelectric 0–3 composites’, J. Appl. Phys., 1993, 73, (5), pp. 24622466, doi: 10.1063/1.354057.
    3. 3)
      • 34. Pittini, R., Hernes, M.: ‘Pressure tolerant power electronics for deep and ultradeep water’. Offshore Technology Conf., Houston, USA, 2–5 May 2011.
    4. 4)
      • 28. Do, M.T., Augé, J.L., Lesaint, O.: ‘Optical measurement of partial discharges in silicone gel under repetitive pulse voltage’. Proc. IEEE Int. Symp. Electrical Insulating Materials, Kitakyushu, Japan, 5–9 June 2005, pp. 360363.
    5. 5)
      • 36. Lupo, G., Miano, G., Tucci, V.: ‘Field distribution in cable terminations from a quasi-static approximation of the Maxwell equations’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (3), pp. 399409, doi: 10.1109/94.506213.
    6. 6)
      • 15. Fabian, J.H., Hartmann, S., Hamidi, A.: ‘Partial discharge failure analysis of AlN substrates for IGBT modules’, Microelectron. Reliab., 2004, 44, pp. 14251439, doi: 10.1016/j.microrel.2004.07.111.
    7. 7)
      • 32. Liland, K.B., Lesaint, C., Lundgaard, L., et al: ‘Liquid insulation of IGBT modules: long term chemical compatibility and high voltage endurance testing’. Proc. IEEE Int. Conf. Dielectrics, Montpellier, France, 3–7 July 2016, pp. 384389.
    8. 8)
      • 44. Ogitani, S., Bidstrup-Allen, S.A., Kohl, P.A.: ‘Factor influencing the permittivity of polymer/ceramic composites for embedded capacitors’, IEEE Trans. Adv. Packag., 2000, 23, (2), pp. 313322, doi: 10.1109/6040.846650.
    9. 9)
      • 12. Frey, D., Schanen, J.L., Auge, J.L., et al: ‘Electric field investigation in IGBT power modules’. Proc. IEEE Int. Conf. Solid Dielectrics, Toulouse, France, 5–9 July 2004.
    10. 10)
      • 24. Breit, F., Dinculescu, S., Dutarde, E., et al: ‘Method and device for testing a power module’. US Patent 6836125B2, December 2004.
    11. 11)
      • 43. Diaham, S., Zelmat, S., Locatelli, M.L., et al: ‘Dielectric breakdown of polyimide films: area, thickness and temperature dependence’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 1827, doi: 10.1109/TDEI.2010.5411997.
    12. 12)
      • 2. Kaplar, R.J., Neely, J.C., Huber, D.L., et al: ‘Generation-after-next power electronics’, IEEE Power Electron. Mag., 2017, 4, (1), pp. 3642, doi: 10.1109/MPEL.2016.2643098.
    13. 13)
      • 1. Kassakian, J.G., Jahns, T.M.: ‘Evolving and emerging applications of power electronics in systems’, IEEE Emerg. Sel. Top. Power Electron., 2013, 1, (2), pp. 4758, doi: 10.1109/JESTPE.2013.2271111.
    14. 14)
      • 9. Donzel, L., Schuderer, J.: ‘Nonlinear resistive electric field control for power electronic modules’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 955959, doi: 10.1109/TDEI.2012.6215099.
    15. 15)
      • 46. Moulson, A.J., Herbert, J.M.: ‘Electroceramics: materials, properties, applications’ (John Wiley & Sons, Chichester, England, 2003, 2nd edn.).
    16. 16)
      • 21. Romano, P., Viola, F., Miceli, R., et al: ‘Partial discharges on IGBT modules: are sinusoidal waveforms sufficient to evaluate behavior?’. Proc. IEEE Conf. Electrical Insulation and Dielectric Phenomena, Des Moines, USA, 19–22 October 2014, pp. 224227.
    17. 17)
      • 18. IEC 61287-1: ‘Railway applications – power converters installed on board rolling stock – part 1: characteristics and test methods’, Edition 3.0, 2014.
    18. 18)
      • 14. Mitic, G., Lefranc, G.: ‘Localization of electrical-insulation and partial-discharge failures of IGBT modules’, IEEE Trans. Ind. Appl., 2002, 38, (1), pp. 175180, doi: 10.1109/28.980373.
    19. 19)
      • 13. Mitic, G., Lefranc, G.: ‘Localization of electrical-insulation and partial-discharge failures of IGBT modules’. Proc. IEEE 36th Industry Applications Society (IAS) Meeting, Phoenix, USA, 3–7 October 1999, pp. 14531458.
    20. 20)
      • 39. Donzel, L., Christen, T., Greuter, F.: ‘Nonlinear resistive electric field grading part 2: materials and applications’, IEEE Electr. Insul. Mag., 2011, 27, (2), pp. 1829, doi: 10.1109/MEI.2011.5739419.
    21. 21)
      • 42. Zelmat, S., Locatelli, M.L., Lebey, T., et al: ‘Investigations on high temperature polyimide potentialities for silicon carbide power device passivation’, Microelectron. Eng., 2006, 83, pp. 5154, doi: 10.1016/j.mee.2005.10.050.
    22. 22)
      • 4. Mori, M., Kobayashi, H., Yasuda, Y.: ‘6.5 kV ultra soft & fast recovery diode (U-SFD) with high reverse recovery capability’. Proc. IEEE Int. Symp. Power Semiconductor Devices and ICs, Toulouse, France, 22–25 May 2000, pp. 115118.
    23. 23)
      • 41. Satou, H., Makino, D.: ‘Polyimides for electronic applications’, in Wong, C.P. (Ed.): ‘Polymers for electronic & photonic application’ (Academic Press, San Diego, CA, 1993, 1st edn.), pp. 221247.
    24. 24)
      • 10. Bayer, C.F., Waltrich, U., Soueidan, A., et al: ‘Partial discharges in ceramic substrates-correlation of electric field strength simulations with phase resolved partial discharge measurements’. Proc. Int. Conf. Electronics Packaging, Sapporo, Japan, 20–22 August 2016, pp. 530535.
    25. 25)
      • 35. Mitic, G., Licht, T., Lefranc, G.: ‘IGBT module technology with high partial discharge resistance’. Proc. IEEE 36th Industry Applications Society (IAS) Meeting, Chicago, USA, 30 September–4 October 2001, pp. 18991904.
    26. 26)
      • 40. Do, M.T., Augé, J.L., Lesaint, O.: ‘Breakdown field in silicone gel under needle plane geometry’. Proc. IEEE Int. Symp. Electrical Insulating Materials, Mie, Japan, 7–11 September 2008, pp. 222225.
    27. 27)
      • 11. Frey, D., Schanen, J., Auge, J., et al: ‘Electric field investigation in high voltage power modules using finite element simulations and partial discharge measurements’. Proc. IEEE 38th Industry Applications Society (IAS) Meeting, Salt Lake City, USA, 12–16 October 2003, pp. 10001005.
    28. 28)
      • 3. Auerbach, F., Bauer, J.G., Glantschnig, M., et al: ‘6.5 kV IGBT-modules’. Proc. IEEE 34th Industry Applications Society (IAS) Meeting, Phoenix, USA, 3–7 October 1999, pp. 17701774.
    29. 29)
      • 20. Abdelmalik, A.A.: ‘Influence of sinusoidal and square voltages on partial discharge inception in geometries with point-like termination’, High Voltage, 2017, 3, (1), pp. 3137, doi: 10.1049/hve.2017.0074.
    30. 30)
      • 19. Abdelmalik, A.A., Nysveen, A., Lundgaard, L.: ‘Influence of fast rise voltage and pressure on partial discharges in liquid embedded power electronics’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 27702779, doi: 10.1109/TDEI.2015.005411.
    31. 31)
      • 8. Bayer, C.F., Baer, E., Waltrich, U., et al: ‘Simulation of the electric field strength in the vicinity of metallization edges on dielectric substrates’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 257265, doi: 10.1109/TDEI.2014.004285.
    32. 32)
      • 27. Ebke, T., Khaddour, A., Peier, D.: ‘Degradation of silicone gel by partial discharges due to different defects’. Proc. IEE Int. Conf. Dielectric Materials, Measurement and Applications, Edinburg, UK, 17–21 September 2000, pp. 202207.
    33. 33)
      • 23. Lebey, T., Malec, D., Dinculescu, S., et al: ‘Partial discharges phenomenon in high voltage power modules’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (4), pp. 810819, doi: 10.1109/TDEI.2006.1667740.
    34. 34)
      • 16. Fabian, J.H., Hartmann, S., Hamidi, A.: ‘Analysis of insulation failure modes in high power IGBT modules’. Proc. 40th Industry Applications Society (IAS) Meeting, Kowloon, Hong Kong, China, 2–6 October 2005, pp. 799805.
    35. 35)
      • 37. Egiziano, L., Tucci, V., Petrarca, C., et al: ‘A Galerkin model to study the field distribution in electrical components employing nonlinear stress grading materials’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (6), pp. 765773, doi: 10.1109/94.822012.
    36. 36)
      • 30. Arumugam, S., Gorchakov, S., Schoenemann, T.: ‘Dielectric and partial discharge investigations on high power insulated gate bipolar transistor modules’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 19972007, doi: 10.1109/TDEI.2015.005571.
    37. 37)
      • 25. Auge, J.L., Lesaint, O., Vu Thi, A.T.: ‘Partial discharges in ceramic substrates embedded in liquids and gels’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 262274, doi: 10.1109/TDEI.2013.6451366.
    38. 38)
      • 29. Arumugam, S.: ‘Influence of moisture on dielectric condition of high power insulated gate bipolar transistor modules’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (3), pp. 13641374, doi: 10.1109/TDEI.2015.005571.
    39. 39)
      • 6. Fujii, K., Koellensperger, P., De Doncker, R.W.: ‘Characterization and comparison of high blocking voltage IGBTs and IEGTs under hard- and soft-switching conditions’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 172179, doi: 10.1109/TPEL.2007.911771.
    40. 40)
      • 26. Auge, J.L., Lesaint, O., Frey, D.: ‘Optical and electrical investigation of dielectric gel behavior under high electrical field’. Proc. IEEE Int. Conf. Solid Dielectrics, Toulouse, France, 5–9 July 2004.
    41. 41)
      • 17. Wang, N., Cotton, I., Robertson, J., et al: ‘Partial discharge control in a power electronic module using high permittivity non-linear dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (4), pp. 13191326, doi: 10.1109/TDEI.2010.5539704.
    42. 42)
      • 5. Lorenz, L., Mauder, A., Bauer, J.G.: ‘Rated overload characteristics of IGBTs for low-voltage and high-voltage devices’, IEEE Trans. Ind. Appl., 2004, 40, (5), pp. 12731280, doi: 10.1109/TIA.2004.834022.
    43. 43)
      • 31. Abdelmalik, A.A., Borge, M.D., Nysveen, A., et al: ‘Statistical analysis of dielectric breakdown of liquid insulated printed circuit boards’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 23032310, doi: 10.1109/TDEI.2016.7556507.
    44. 44)
      • 7. Mitic, G., Sommer, K.H., Dieci, D., et al: ‘The thermal impedance of new power semiconductor modules using AlN substrates’. Proc. IEEE 33th Industry Applications Society (IAS) Meeting, St. Louis, USA, 12–15 October 1998, pp. 10261030.
    45. 45)
      • 22. Breit, F., Dutarde, E., Saiz, J., et al: ‘Partial discharge detection in power modules’. Proc. IEEE 33rd Annual Power Electronics Specialists Conf., Cairns, Queensland, Australia, 23–27 June 2002, pp. 748752.
    46. 46)
      • 38. Donzel, L., Christen, T., Greuter, F.: ‘Nonlinear resistive electric field grading part 1: theory and simulation’, IEEE Electr. Insul. Mag., 2010, 27, (6), pp. 4759, doi: 10.1109/MEI.2010.5599979.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0186
Loading

Related content

content/journals/10.1049/hve.2017.0186
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading