Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Model-based accuracy enhancements for guarded conductivity measurements: determination of effective electrode areas utilising numerical field simulation

Methods utilising current measurements for conductivity and permittivity determination require precise knowledge of the effective electrode area in order to obtain accurate results. Owing to field distortions (e.g. caused by fringing) in guarded electrode setups, the effective electrode area differs significantly from the geometrical calculated. Focusing on guarded electrode setups for conductivity determination, a generic method based on numerical field simulation is presented allowing a convenient determination of the relevant effective electrode area. For this purpose, a brief overview of yet existing normative guidelines and related research work is provided. State-of-the-art conductivity measurement setups are presented in order to identify parameters which affect the field distribution within the measurement arrangements. The description of the implemented method and its realisation in COMSOL multiphysics is followed by its validation using analytical fringing calculations. Furthermore, presented method is used for the evaluation of fringing effects and additional field distortion caused by design aspects of the measurement cell itself and potential imbalances related to the measurement setup. Moreover, dependencies on conductivity of the surrounding environment are considered. Achieved model-based accuracy enhancements are calculated and are leading to a gain in precision for conductivity determination of up to 25% compared to yet existing approaches.

References

    1. 1)
      • 26. Tsekmes, I.A.: ‘Electrical characterization of polymeric DC mini-cables by means of space charge & conduction current measurements’. Master's thesis, Delft University of Technology, 2012.
    2. 2)
      • 5. ‘DIN EN 62631-3-1:2017-01; VDE 0307-3-1:2017-01 Dielektrische und resistive Eigenschaften fester Isolierstoffe – Teil 3-1: Bestimmung resistiver Eigenschaften (Gleichspannungsverfahren) – Durchgangswiderstand und spezifischer Durchgangswiderstand – Basisverfahren (IEC 62631-3-1:2016); Deutsche Fassung EN 62631-3-1:2016’, Deutsche Institut für Normung e.V., Verband der Elektrotechnik Elektronik Informationstechnik e. V. Std.
    3. 3)
      • 6. ‘DIN EN 62631-3-2:2016-10; VDE 0307-3-2:2016-10 Dielektrische und resistive Eigenschaften fester Isolierstoffe – Teil 3-2: Bestimmung resistiver Eigenschaften (Gleichspannungsverfahren) – Oberflächenwiderstand und spezifischer Oberflächenwiderstand (IEC 62631-3-2:2015); Deutsche Fassung EN 62631-3-2:2016’, Deutsche Institut für Normung e.V., Verband der Elektrotechnik Elektronik Informationstechnik e. V. Std.
    4. 4)
      • 30. Atiwi, N., Josefsson, S., Thiringer, T., et al: ‘Analysis and performance of high voltage DC power supplies used for low current measurements on dielectric materials’. IEEE Annual Report Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, USA, October 2014.
    5. 5)
      • 27. Tschentscher, M., Franck, C.M.: ‘Highly accurate current response measurements of insulation materials for HVDC applications’. IEEE 11th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, July 2015.
    6. 6)
      • 25. Huldén, P.: ‘Conductivity measurement on thick insulating plaque samples’. Master's thesis, KTH Royal Institute of Technology – School of Electrical Engineering, 2014.
    7. 7)
      • 4. ‘DIN IEC 60093:1993-12; VDE 0303-30:1993-12 Prüfverfahren für Elektroisolierstoffe; Spezifischer Durchgangswiderstand und spezifischer Oberflächenwiderstand von festen, elektrisch isolierenden Werkstoffen (IEC 60093:1980); Deutsche Fassung HD 429 S1:1983’, Deutsche Institut für Normung e.V., Verband der Elektrotechnik Elektronik Informationstechnik e. V. Std.
    8. 8)
      • 33. Viertel, J., Petersson, L., Friberg, A., et al: ‘Electrode influence on DC conductivity measurements of low density poly ethylene’. IEEE Int. Conf. on Solid Dielectrics (ICSD), Bologna, Italy, June, July 2013.
    9. 9)
      • 24. Ghorbani, H., Olsson, C.-O., Englund, V.: ‘Robust characterization of the DC-conductivity of HVDC insulation materials at high electric fields’. 9th Int. Conf. on Insulated Power Cables, Jicable 15, Versailles, France, June 2015.
    10. 10)
      • 31. Freye, C., Niedik, C.F., Jenau, F.: ‘Investigation on DC conductivity of elastomeric insulating materials considering and reducing influences caused by DC test voltage generation’. IEEE 51st Int. Universities Power Engineering Conf. (UPEC), Coimbra, Portugal, September 2016.
    11. 11)
      • 12. Endicott, H.: ‘Guard-gap correction for guarded-electrode measurements and exact equations for the two-fluid method of measuring permittivity and loss’, J. Test. Eval., 1976, 4, (3), pp. 188195.
    12. 12)
      • 22. Olsson, C.-O., Källstrand, B., Ritums, J., et al: ‘Experimental determination of DC conductivity for XLPE insulation’. 21st Nordic Insulation Symp. – Nord-IS 09, Gothenburg, Sweden, June 2009.
    13. 13)
      • 34. Niedik, C.F., Freye, C., Jenau, F., et al: ‘Investigation on the electrical characterization of silicone rubber using DC conductivity measurement’. IEEE Int. Conf. on Dielectrics (ICD), Montpellier, France, July 2016.
    14. 14)
      • 9. Amey, W.G.: ‘A method for evaluating the surface and volume resistance characteristics of solid dielectric materials’. PhD dissertation, School of Engineering, The Johns Hopkins University, 1947.
    15. 15)
      • 23. Ghorbani, H.: ‘Characterization of conduction and polarization properties of HVDC cable XLPE insulation materials, Licentiate Thesis’. PhD. dissertation, KTH Royal Institute of Technology – School of Electrical Engineering, 2016.
    16. 16)
      • 11. Lauritzen, J.I.: ‘The effective area of a guarded electrode’. Annual Report Conf. on Electrical Insulation, White Sulphur Springs, USA, November 1963.
    17. 17)
      • 10. Amey, W.G., Hamburger, F.: ‘A method for evaluating the surface and volume resistance characteristics of solid dielectric materials’. Proc. – American Society for Testing and Materials, 1949, vol. 49, pp. 10791091.
    18. 18)
      • 35. Wang, N., Zhou, Y., Liang, X., et al: ‘Influences of thickness and electrode materials on electrical conduction in polyethylene films’. 7th Int. Conf. on Properties and Applications of Dielectric Materials, Nagoya, Japan, June 2003.
    19. 19)
      • 1. IEC 60093:1980: ‘Methods of test for insulating materials for electrical purposes; volume resistivity and surface resistivity of solid electrical insulating materials’, International Electrotechnical Commission Std.
    20. 20)
      • 17. Küchler, A., Piovan, U., Berglund, M., et al: ‘HVDC transformer insulation-oil conductivity’. CIGRÉ Technical Brochure 646. CIGRÉ, 2016.
    21. 21)
      • 2. IEC 62631-3-1:2016: ‘Dielectric and resistive properties of solid insulating materials – Part 3-1: determination of resistive properties (DC methods) – volume resistance and volume resistivity – general method’, International Electrotechnical Commission Std.
    22. 22)
      • 7. ASTM D257-14: ‘Test methods for DC resistance or conductance of insulating materials’, ASTM International, West Conshohocken, PA, 2014, ASTM Std.
    23. 23)
      • 19. Bodega, R.: ‘Space charge accumulation in polymeric high voltage DC cable systems’. PhD dissertation, Delft University of Technology, 2006.
    24. 24)
      • 14. Lisowski, M., Kacprzyk, R.: ‘Changes proposed for the IEC 60093 standard concerning measurements of the volume and surface resistivities of electrical insulating materials’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (1), pp. 139145.
    25. 25)
      • 16. Zhou, Y., Hao, M., Chen, G., et al: ‘Study of a guarded electrode system in the DC conductivity measurement of insulating liquid’, Meas. Sci. Technol., 2014, 25, (7), p. 075005.
    26. 26)
      • 13. Goad, D., Wintle, H.: ‘Capacitance corrections for guard gaps’, Meas. Sci. Technol., 1990, 1, (9), p. 965.
    27. 27)
      • 3. IEC 62631-3-2:2015: ‘Dielectric and resistive properties of solid insulating materials – Part 3-2: determination of resistive properties (DC methods) – surface resistance and surface resistivity’, International Electrotechnical Commission Std.
    28. 28)
      • 21. Andersson, J., Englund, V., Hagstrand, P.-O., et al: ‘Comparison of test setups for high field conductivity of HVDC insulation materials’. 23rd Nordic Insulation Symp. – Nord-IS 13, Trondheim, Norway, June 2013.
    29. 29)
      • 20. Gaska, K., Xu, X., Gubanski, S., et al: ‘Electrical, mechanical and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process’, Polymers, 2017, 9, (1), p. 11.
    30. 30)
      • 18. Zhu, Y., Yoon, H.G., Suh, K.S.: ‘Electrical properties of silane crosslinked polyethylene in comparison with DCP crosslinked polyethylene’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (2), pp. 164168.
    31. 31)
      • 32. Freye, C., Niedik, C.F., Jenau, F.: ‘Leitfähigkeitsuntersuchungen an Werkstoffen der HGÜ Kabeltechnik unter Berücksichtigung von Einfluss- und Anforderungsfaktoren’. VDE-Fachtagung Hochspannungstechnik, Berlin, Germany, November 2016.
    32. 32)
      • 28. Freye, C., Niedik, C.F., Jenau, F., et al: ‘DC conductivity measurements on XLPE specimens with layer thickness in the mm range’. IEEE Int. Conf. on Dielectrics (ICD), Montpellier, France, July 2016.
    33. 33)
      • 8. Thomson, J.J.: ‘Notes on recent researches in electricity and magnetism: intended as a sequel to Professor Clerk-Maxwell's Treatise on electricity and magnetism’ (Clarendon Press, Oxford, 1893).
    34. 34)
      • 29. Keithley Instruments Inc.: ‘Low current measurements’. Application Note Series – Number 1671, 2012.
    35. 35)
      • 15. Lisowski, M., Skopec, A.: ‘Effective area of thin guarded electrode in determining of permittivity and volume resistivity’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (1), pp. 2431.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0182
Loading

Related content

content/journals/10.1049/hve.2017.0182
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address