http://iet.metastore.ingenta.com
1887

access icon openaccess Condition monitoring and diagnosis of power equipment: review and prospective

Loading full text...

Full text loading...

/deliver/fulltext/hve/2/2/HVE.2017.0026.html;jsessionid=1np3l8sikgpdr.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhve.2017.0026&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag.., 2010, 8, (1), pp. 1828.
    2. 2)
      • 2. Mcdaniel, P., Mclaughlin, S.: ‘Security and privacy challenges in the smart grid’, IEEE Secur. Priv. Mag., 2009, 7, (3), pp. 7577.
    3. 3)
      • 3. Amin, M., Schewe, P.F.: ‘Preventing blackouts: building a smarter power grid’, Sci. Am., 2007, (8), pp. 6067.
    4. 4)
      • 4. Reddy, B.S., Verma, A.R.: ‘Novel technique for electric stress reduction across ceramic disc insulators used in UHV AC and DC transmission systems’, Appl. Energy, 2017, 185, Part 2, pp. 17241731.
    5. 5)
      • 5. Huang, D.C., Shu, Y.B., Ruan, J.J., et al: ‘Ultra high voltage transmission in China: developments, current status and future prospects’, Proc. IEEE, 2009, 97, (3), pp. 555583.
    6. 6)
      • 6. Yu, Y.X., Luan, W.P.: ‘Smart grid and its implementations’, Proc. CSEE, 2009, 29, (34), pp. 18(in Chinese).
    7. 7)
      • 7. Sedghi, M., Ahmadian, A., Aliakbar-Golkar, M.: ‘Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 304316.
    8. 8)
      • 8. Zhang, X., Fu, Y., Wang, Y., et al: ‘Integrated PSS controller of variable speed wind turbines with virtual inertia and damping control’, Trans. Chin. Electrotechn. Soc., 2015, 30, (1), pp. 159169. (in Chinese).
    9. 9)
      • 9. Peng, X., Jirutitijaroen, P., Singh, C.: ‘A distributionally robust optimization model for unit commitment considering uncertain wind power generation’, IEEE Trans. Power Syst., 2016, 32, pp. 111.
    10. 10)
      • 10. Wang, Z.J.: ‘Condition monitoring and fault diagnosis for power equipment’ (Shanghai Jiaotong University Press, 2012).
    11. 11)
      • 11. Dai, J.Z., Dong, M., Wang, L., et al: ‘Study on AC breakdown and broadband dielectric response properties of transformer oil-based nanofluids’. Int. Conf. on Condition Monitoring and Diagnosis, Xi'an, China, September 2016, pp. 2427.
    12. 12)
      • 12. Stone, G.C.: ‘PD diagnostics and electrical equipment insulation condition assessment’, IEEE Trans. Dielectr. Electr., 2005, 12, (5), pp. 891904.
    13. 13)
      • 13. Li, W.W., Li, J.Y., Yin, G.L., et al: ‘Frequency dependence of breakdown performance of XLPE with different artificial defects’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (4), pp. 13511359.
    14. 14)
      • 14. Li, S.T., Yin, G.L., Li, J.Y.: ‘Breakdown performance of low density polyethylene nanocomposites’. The IEEE 10th Int. Conf. on the Properties & Applications of Dielectric Materials, Bangalore, India, July 2012, pp. 14.
    15. 15)
      • 15. Morshuis, P.H.F., Smit, J.J.: ‘Partial discharges at dc voltage: their mechanism, detection and analysis’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (2), pp. 328340.
    16. 16)
      • 16. Wu, M., Cao, H., Cao, J., et al: ‘An overview of state-of-the-art partial discharge analysis techniques for condition monitoring’, IEEE Electr. Insul. Mag., 2015, 31, (6), pp. 2235.
    17. 17)
      • 17. N'Cho, J.S., Fofana, I., Hadjadj, Y., et al: ‘Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers’, Energies, 2016, 9, (5), pp. 367396.
    18. 18)
      • 18. Tenbohlen, S., Coenen, S., Djamali, M., et al: ‘Diagnostic measurements for power transformers’, Energies, 2016, 9, (5), pp. 347372.
    19. 19)
      • 19. Akbari, A., Werle, P., Borsi, H., et al: ‘Transfer function-based partial discharge localization in power transformers: a feasibility study’, IEEE Electr. Insul. Mag., 2002, 18, (5), pp. 2232.
    20. 20)
      • 20. Fofana, I., Hadjadj, Y.: ‘Electrical-based diagnostic techniques for assessing insulation condition in aged transformers’, Energies, 2016, 9, (9), pp. 679705.
    21. 21)
      • 21. Sinaga, H.H., Phung, B.T., Blackburn, T.R.: ‘Partial discharge localization in transformers using UHF detection method’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 18911900.
    22. 22)
      • 22. Wang, X., Li, B., Roman, H.T., et al: ‘Acousto-optical PD detection for transformers’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 10681073.
    23. 23)
      • 23. Markalous, S.M., Tenbohlen, S., Feser, K.: ‘Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals’, IEEE Trans. Dielectr. Electr. Insul., 2009, 15, (6), pp. 15761583.
    24. 24)
      • 24. Akihiko, I.M.K., Hikita, M.: ‘Partial discharge detection and induced surface current analysis using transient earth voltage method for high voltage equipment’. CMD 2016, Xi'an, China, September 2016, pp. 455459.
    25. 25)
      • 25. Kawada, H., Honda, M., Inoue, T., et al: ‘Partial discharge automatic monitor for oil-filled power transformer’,IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103, (2), pp. 422428.
    26. 26)
      • 26. Chen, F.C., Tang, Z.C.: ‘A study on hot spot detection possibility in simulated oil-filled-type transformer tank by using ultrasonic methods’, IEE J. Trans. Electr. Electron. Eng., 2012, 7, (1), pp. 16.
    27. 27)
      • 27. Yao, R., Si, G., Zhang, Y., et al: ‘Study on the partial discharge characteristics and development process in use of the multiple discharge patterns for the typical defects in gas-insulated switchgear’, Can. J. Electr. Comput. Eng., 2016, 39, (4), pp. 297310.
    28. 28)
      • 28. Yi, M., Pu, M., Zhu, Z., et al: ‘Research on insulation aging of distribution switchgear’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 206209.
    29. 29)
      • 29. Xie, Y., Zhou, W., Ye, H., et al: ‘Severity diagnosis and assessment on defects in GIS based on partial discharge detection’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 928931.
    30. 30)
      • 30. Tao, S.Y., Yang, F.Y., Duan, D.P., et al: ‘Transient earth voltage detection technique for switchgears in distribution network’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 542545.
    31. 31)
      • 31. Geng, B., Li, C., Qi, B., et al: ‘The comparison of sensitivity between the UHF and ultrasonic methods for partial discharge detecting in GIS’, Electr. Insul. Dielectr. Phenom. IEEE, 2011, pp. 468471.
    32. 32)
      • 32. Wang, C., Zhang, L., Hua, Z., et al: ‘A communication interference suppression method for ultrahigh-frequency partial discharge detection’. Int. Conf. on Condition Monitoring and Diagnosis, 2012, pp. 744747, doi: 10.1109/CMD.2012.6416253.
    33. 33)
      • 33. Yan, J., Wang, T.Z.: ‘Research on spectral characteristics of GIS partial discharge ultrasonic signal’, Appl. Mech. Mater., 2014, 521, pp. 405408.
    34. 34)
      • 34. Tang, J., Ma, S., Zhang, X., et al: ‘Investigation of partial discharge between moving charged metal particles and electrodes in insulating oil under flow state and AC condition’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 10991105.
    35. 35)
      • 35. Xia, Y., Gong, Y., Hu, T., et al: ‘Research on arrangement of ultra-high frequency sensors based on GIS partial discharge’. Int. Conf. on High Voltage Engineering and Application, 2015, pp. 14.
    36. 36)
      • 36. Qi, B., Li, C., Xing, Z., et al: ‘Partial discharge initiated by free moving metallic particles on GIS insulator surface: severity diagnosis and assessment’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 766774.
    37. 37)
      • 37. Liang, J., Zhang, L., Li, J., et al: ‘Comparison of partial discharge measurement methods under the oscillating lightning impulse voltage in GIS’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 900903.
    38. 38)
      • 38. Peng, J., Wang, K., Tang, Z., et al: ‘Evaluation on validity of the UHF sensor and their arrangement on GIS’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 729732.
    39. 39)
      • 39. Zhang, J., Zhu, M., Liu, Q., et al: ‘Design and development of internal UHF sensor for partial discharge detection in GIS’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 709712.
    40. 40)
      • 40. He, L., Li, S., Zhou, D., et al: ‘Analysis method of abnormal condition in GIS based on ultrasonic detection’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 570573.
    41. 41)
      • 41. Liu, J., Dong, M., Xie, J., et al: ‘Study on characteristics of corona discharge light pulse in SF6 gas at multi-spectral regions’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 546549.
    42. 42)
      • 42. Qiu, X., Sun, J., Zhang, Y., et al: ‘Optical diagnosis of vacuum breakdown characteristics under microsecond pulse’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 202205.
    43. 43)
      • 43. Li, X., Wang, X., Rong, M., et al: ‘Research on modeling and fault analysis of permanent magnet operating mechanism of vacuum circuit breaker’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 526529.
    44. 44)
      • 44. Ye, R., Dong, M., Liu, J., et al: ‘Research on SF6 gas decomposition detection method based on electrochemical sensors’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 530533.
    45. 45)
      • 45. Zhong, L., Ji, S., Liu, K., et al: ‘The influence of adsorbents on the decomposition characteristics of SF6 under point-plate defect’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 686689.
    46. 46)
      • 46. Liu, K., Ji, S., Zhong, L., et al: ‘The mechanism of SF6 decomposition characteristics under partial discharge at different gas pressures and voltage’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 578581.
    47. 47)
      • 47. Yu, S., Li, S.: ‘The relationship between surface flashover properties and trap characteristics of nanocomposites’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 960963.
    48. 48)
      • 48. Ding, W., Wang, J., Gu, Y., et al: ‘Decomposition characteristics of SF6 under creeping discharge on solid insulator’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 701704.
    49. 49)
      • 49. Luo, J., Fang, Y.H., Zhao, Y.D., et al: ‘Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy’, Anal. Methods, 2014, 7, (3), pp. 12001207.
    50. 50)
      • 50. Pan, J., Tang, J., Yao, Q., et al: ‘Study on SF6 decomposition characteristics under thermal fault and its representation method’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 709712.
    51. 51)
      • 51. Zeng, F., Tang, J., Fan, Q., et al: ‘Decomposition characteristics of SF6 under thermal fault for temperatures below 400°C’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 9951004.
    52. 52)
      • 52. Wang, Y., Wei, N., Ji, S., et al: ‘Study on SF6 gas decomposition products of typical GIS defect models by infrared detection’. Int. Conf. on Electric Power Equipment Switching Technology, 2011, pp. 496499.
    53. 53)
      • 53. Tang, J., Zeng, F., Pan, J., et al: ‘Correlation analysis between formation process of SF6 decomposed components and partial discharge qualities’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 864875.
    54. 54)
      • 54. Tang, J., Liu, F., Zhang, X., et al: ‘Decomposition products part 1: decomposition characteristics of SF under four different partial discharges’ (IEEE, 2012).
    55. 55)
      • 55. Wang, Y., Li, L., Yao, W.: ‘SF6 byproducts in high-humidity environment: an experimental evaluation between 200 and 500 C’, J. Electromagn. Anal. Appl., 2011, 03, (6), pp. 179183.
    56. 56)
      • 56. Lu, Q., Tian, H., Gao, K.: ‘Detecting and diagnosis method of finding abnormal vibration in potential transformer of GIS’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 538541.
    57. 57)
      • 57. Wang, S., Xiong, J., Li, Z., et al: ‘Voltage distribution of 220 kV GIS under different lightning impulse’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 548561.
    58. 58)
      • 58. Hu, M., Han, X., Li, Q., et al: ‘Research on partial discharge characteristics of protrusion defect in GIS under oscillating lightning impulse voltage’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), 2016, pp. 920923.
    59. 59)
      • 59. Montanari, G.C.: ‘On-line partial discharge diagnosis of power cables’. 2009 IEEE Electrical Insulation Conf., Canada, 31 May–3 June 2009, pp. 210215.
    60. 60)
      • 60. Dakin, T.W.: ‘Dakin electrical insulation deterioration treated as a chemical rate phenomenon’, Trans. Am. Inst. Electr. Eng., 1948, 67, (1), pp. 113122.
    61. 61)
      • 61. IEC 60216: ‘Guide for the determination of thermal endurance properties of electrical insulating materials’, 5th issue, 2001–2005.
    62. 62)
      • 62. Shen, X.Q., Yang, Y., Cong, B., et al: ‘Temperature measurement of power cable based on distributed optical fiber sensor’, J. Phys., Conf. Series, 2016, 679, pp. 12.
    63. 63)
      • 63. Ukil, A., Braendle, H., Krippner, P.: ‘Distributed temperature sensing: review of technology and applications’, IEEE Sens. J., 2015, 12, (5), pp. 885892.
    64. 64)
      • 64. Sun, K., Zou, M., Wang, B., et al: ‘XLPE cable sheath circulation integrated monitoring terminal design’. Int. Symp. on Advances in Electrical, Electronics and Computer Engineering, 2016, pp. 01110114.
    65. 65)
      • 65. Zhou, C.K., Yang, Y., Li, M.Z., et al: ‘An integrated cable condition diagnosis and fault localization system via sheath current monitoring’. CMD 2016, pp. 18.
    66. 66)
      • 66. Barrett, J.S., Anders, G.J.: ‘Circulating current and hysteresis losses in screens, sheaths and armour of electric power cables-mathematical models and comparison with IEC Standard 287’, IEE Proc. Sci. Meas. Technol., 1997, 144, (3), pp. 101110.
    67. 67)
      • 67. Zhu, X.H., Du, B.X., Zhou, F.Z., et al: ‘Progress of on-line monitoring and detecting technique for high voltage XLPE cable’, Insul. Mater., 2009, 42, (5), pp. 5863(in chinese).
    68. 68)
      • 68. Kim, Y.H., Youn, Y.W., Yi, S.H., et al: ‘High-resolution partial discharge location estimation in power cables’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 758765.
    69. 69)
      • 69. Gu, X., Liu, B., Xu, Y., et al: ‘Study on partial discharge pulse attenuation characteristics in 110 kV XLPE power cable’. 2015 IEEE 11th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), 2015, pp. 788791.
    70. 70)
      • 70. Khan, A.A., Malik, N., Al-Arainy, A., et al: ‘A review of condition monitoring of underground power cables’. IEEE Int. Conf. on Condition Monitoring and Diagnosis, 2012, pp. 909912.
    71. 71)
      • 71. Sheng, B., Zhou, W., Yu, J., et al: ‘On-line PD detection and localization in cross-bonded HV cable systems’, IEEE Trans. Dielectr. Electr. Insul., 2013, 21, (5), pp. 22172224.
    72. 72)
      • 72. Tang, S., Chen, S., Liu, Q., et al: ‘A small tracked robot for cable tunnel inspection’, Adv. Autom. Robot., 2011, 122, pp. 591598.
    73. 73)
      • 73. Su, Z., Li, Q.: ‘Historical review and summary on measures against pollution flashover occurred in power grids in China’, Power Syst. Technol., 2010, 34, (12), pp. 125130(in Chinese).
    74. 74)
      • 74. Huang, X.: ‘On-line monitoring and fault diagnosis of transmission-line’ (China Electric Power Press, 2014, 2nd edn.).
    75. 75)
      • 75. Yang, Z., Zivlak, N., Xu, M., et al: ‘Study on overhead transmission line on-line monitoring technology’, Thermal Sci., 2016, 20, (2), pp. S383S391.
    76. 76)
      • 76. Cai, W., Deng, H., Zhou, G.: ‘Online measurement of equivalent salt deposit density by using optical technology’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 409413.
    77. 77)
      • 77. Wijewardana, Y., Shilpadi, A., Mowjood, M., et al: ‘Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled Lysimeter studies’, Env. Monit. Assess., 2017, 189, (2), pp. 57, (1–15).
    78. 78)
      • 78. Zhao, C., Zhou, Z., Gao, S., et al: ‘Pollution flashover pre-warning system based on prediction of flashover voltage’, High Volt. Eng., 2014, 40, (11), pp. 33653373(in Chinese).
    79. 79)
      • 79. Hadjrioua, F., Mahi, D., Slama, M., et al: ‘Electro-thermal dynamic model using the analytical arc parameters for the prediction of the critical flashover condition on the HVDC polluted insulator’, IET Gen. Transm. Distrib., 2017, 11, (2), pp. 427436.
    80. 80)
      • 80. Mao, N., Ma, G., Zhou, H., et al: ‘The online monitoring system of transmission-lines weight based on fiber sensing technology’. Int. Conf. on Condition Monitoring and Diagnosis, Xi'an, China, 2016, pp. 640643.
    81. 81)
      • 81. Huang, X., Wei, X., Li, M., et al: ‘On-line transmission-line icing monitoring technology based on three groups of force sensors and angle sensors’, High Volt. Eng., 2014, 40, (2), pp. 374380(in Chinese).
    82. 82)
      • 82. Yang, L., Jiang, X., Hao, Y.: ‘Recognition of natural ice types on in-service glass insulators based on texture feature descriptor’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 535542.
    83. 83)
      • 83. Goncalves, , Rogerio, S., Mendes, C., et al: ‘A mobile robot to be applied in high-voltage power lines’, J. Braz. Soc. Mech. Sic. Eng., 2015, 37, (1), pp. 349359.
    84. 84)
      • 84. Yang, D., Feng, Z., Ren, X., et al: ‘A novel power line inspection robot with dual-parallelogram architecture and its vibration suppression control’, Adv. Robot., 2014, 28, (12), pp. 807819.
    85. 85)
      • 85. Goncalves, R.S., Mendes, C., et al: ‘Review and latest trends in mobile robots used on power transmission lines’, Int. J. Adv. Robot. Syst., 2013, 10, pp. 114, doi: 10.5772/56791.
    86. 86)
      • 86. Zhang, Y., Yuan, X., Fang, Y., et al: ‘UAV low altitude photogrammetry for power line inspection’, Int. J. Geo-Inf., 2017, 6, (1), pp. 116.
    87. 87)
      • 87. Groti, E., Johansen, T.: ‘Communication-planning of unmanned aerial vehicles in delay tolerant network using mixed-integer linear programming’, Model. Identif. Control, 2016, 37, (2), pp. 7779.
    88. 88)
      • 88. Stone, G.C., Lloyd, B., Sasic, M.: ‘Experience with continuous on-line partial discharge monitoring of generators and motors’. 2008 Int. Conf. on Condition Monitoring and Diagnosis, Beijing, 2008.
    89. 89)
      • 89. Chen, J., Pan, J., Li, Z., et al: ‘Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals’, Renew. Energy, 2016, 89, pp. 8092.
    90. 90)
      • 90. Chen, X., Liu, D., Xu, G., et al: ‘Application of wavelet packet entropy flow manifold learning in bearing factory inspection using the ultrasonic technique’, Sensors, 2015, 15, (1), pp. 341351.
    91. 91)
      • 91. Stone, G.C.: ‘Condition monitoring and diagnostics of motor and stator windings – a review’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 20732080, doi: 10.1109/TDEI.2013.6678855.
    92. 92)
      • 92. Yang, X., Li, Z., Hua, J., et al: ‘Automated vibration analysis in loaded condition of hydro turbine generator sets’. 2012 Asia-Pacific Power and Energy Engineering Conf., Shanghai, 2012.
    93. 93)
      • 93. Sun, J., Youn, Y., Hwang, D., et al: ‘Considerations on the long-term reliability of on-line partial discharge ceramic sensor for thermal power generators and its demonstration in the field’, J. Electr. Eng. Technol., 2012, 7, (1), pp. 103108.
    94. 94)
      • 94. Song, J., Li, C., Lin, L., et al: ‘Slot discharge pattern of 10 kV induction motor stator coils under condition of insulation degradation’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 20912098.
    95. 95)
      • 95. Brown, S.K., Mannik, L.: ‘Field testing of a fiber optic rotor temperature monitor for power generators’, Proc. SPIE – Int. Soc. Opt. Eng., 1991, 1584, pp. 1522.
    96. 96)
      • 96. Guo, H., Lin, R.: ‘Wireless power supply RF temperature monitoring system applied to the rotor of generators’. Int. Conf. on Electronics, Communications and Control, 2011, pp. 593596.
    97. 97)
      • 97. Yang, X.Y., Chen, X.H., Cheng, P.Y., et al: ‘Design of monitoring and Fault Diagnosis System on-line for certain gas turbo-generator set’. 2008 Int. Conf. on Condition Monitoring and Diagnosis, Beijing, 2008, pp. 226228.
    98. 98)
      • 98. Elbashir, O.E., Wang, Z.Z., Liu, Q.H.: ‘Condition monitoring and faults diagnosis for synchronous generator using artificial neural networks’, Telkomnika Indonesian J. Electr. Eng., 2014, 12, (2), pp. 11961204.
    99. 99)
      • 99. Yuan, R.: ‘Fault diagnosis for engine by support vector machine and improved particle swarm optimization algorithm’, J. Inf. Comput. Sci., 2014, 11, (13), pp. 48274835.
    100. 100)
      • 100. Wang, F., Zhang, X., Cao, B.: ‘Nonlinear feature fusion based on kernel Fisher discriminant analysis for machine condition monitoring’. 2007 IEEE Int. Conf. on Automation and Logistics, Jinan, China, 2007, pp. 225230.
    101. 101)
      • 101. Rigatos, G.: ‘Condition monitoring and fault diagnosis for electric power generators’, (Springer International Publishing, 2016).
    102. 102)
      • 102. Zhao, T., Liu, Y.P., Lv, F.C.: ‘A feasibility and method research on the on-line monitoring of parallel compensation capacitors’. Int. Conf. Condition Monitoring and Diagnosis, September 2012, pp. 748751.
    103. 103)
      • 103. Liang, Y.P., Wang, D.M., Liu, D.H.: ‘Distribution and influence factors of electric field in high-voltage power capacitor’, IET Sci. Meas. Technol., 2015, 9, (6), pp. 702708.
    104. 104)
      • 104. Santos, H.L., Paulino, J.O.S., Boaventura, W.C., et al: ‘Harmonic distortion influence on grounded wye shunt capacitor banks protection: experimental results’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 12891296.
    105. 105)
      • 105. Huang, X.B., Liu, W., Zhang, Y.: ‘Design of field sampling unit of an on-line monitoring system of dielectric loss in capacitive high-voltage apparatus’. Int. Conf. Electronic Measurement & Instrument, 2009, pp. 660666.
    106. 106)
      • 106. Huang, Z.Y., Xu, W., Dinavahi, V.R.: ‘A practical harmonic resonance guideline for shunt capacitor applications’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 13821387.
    107. 107)
      • 107. Carvalho, A.T., Amorim, H.P., Cunha, C.F.C., et al: ‘Virtual instrumentation for high voltage power capacitors assessment through capacitance monitoring and acoustic partial discharge detection’. IEEE Electrical Insulation Conf., June 2016, pp. 511514.
    108. 108)
      • 108. Kuraishi, T., Miyazaki, S., Takahashi, T., et al: ‘Applicability of oscillating wave test system for on-site PD diagnosis of high voltage power capacitors’. Proc. Int. Conf. Electrical Insulating Materials, June 2014, pp. 172175.
    109. 109)
      • 109. Liu, W.Z., Cai, Z.X., Feng, S.P., et al: ‘Calculation of the internal hottest temperature about running power capacitor’. Proc. Int. Conf. Properties and Applications of Dielectric Materials, July 2009, pp. 126129.
    110. 110)
      • 110. Liang, Y.P., Wang, D.M., Gao, L.L., et al: ‘Calculation of temperature field in power capacitor’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 27882794.
    111. 111)
      • 111. Cox, M.D., Guan, H.H.: ‘Vibration and audible noise of capacitors subjected to nonsinusoidal waveforms’, IEEE Trans. Power Deliv., 1994, 9, (2), pp. 856862.
    112. 112)
      • 112. Wu, P., Ji, S.C., Cao, T., et al: ‘Study on an audible noise reduction measure for the filter capacitors in the HVDC converter station based on the MPP absorber’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 17561762.
    113. 113)
      • 113. Smede, J., Johansson, C.-G., Winroth, O., et al: ‘Design of HVDC converter stations with respect to audible noise requirements’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 747758.
    114. 114)
      • 114. Ji, S.C., Wu, P., Zhang, Q.G., et al: ‘Study on the noise-level calculation method for capacitor stacks in HVDC converter station’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 18661873.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0026
Loading

Related content

content/journals/10.1049/hve.2017.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address