Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China

Voltage source converter (VSC)-based high-voltage direct current (HVDC) and multi-terminal (MT)/DC grid technologies are the new HVDC transmission technologies after ultra-high voltage alternative current (UHVAC) and UHVDC transmission technologies which have been widely used in China. The application of the new technologies has resulted in a rapid increase in the number of schemes in construction and planning worldwide. This has been stimulated by the greater level of functionality available from the VSC technology, which makes it suitable for a wide variety of applications. These include the integration of off-shore wind farms, embedded links within AC networks and interconnectors, especially where the AC networks are relatively ‘weak’. VSC technology has renewed interest in MT DC systems, which may ultimately lead to wide area DC grids. This study outlines the research and application on MT and DC grids in China with respect to VSC-HVDC key technologies and DC grid key technologies based on the presentation given in the International Workshop on Next Generation Power Equipment held on 23 September 2016 in Xian, China. The briefing details of the VSC-HVDC projects constructed and to be constructed in China are summarised in this study.

References

    1. 1)
      • 23. Amankwah, E., Watson, A., Wheeler, P., et al: ‘Control of hybrid modular multilevel converter during grid voltage unbalance’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, 2015.
    2. 2)
      • 3. Xu, Z.: ‘Flexible HVDC system’ (China Machine Press, 2012), ISBN 978-7-111-40185-8, (in Chinese).
    3. 3)
    4. 4)
      • 32. Wei, X.G., Gao, C., Luo, X., et al: ‘A novel design of high-voltage DC circuit breaker in HVDC flexible transmission grid’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 95102.
    5. 5)
    6. 6)
      • 13. Veilleux, E., Boon, T.O.: ‘Power flow analysis in MT HVDC grid’. Proc. of IEEE Power Systems Conf. & Exposition (PSCE), March 2011, pp. 17.
    7. 7)
      • 2. Tang, G.F., Luo, X., Wei, X.G., et al: ‘Multi-terminal HVDC and DC grid technology’, Proc. of the CSEE, 2013, 33, (10), pp. 817, (in Chinese).
    8. 8)
      • 7. IEC 62501: ‘Voltage sourced converter (VSC) valves for high-voltage direct current (HVDC) power transmission – Electrical testing’, Annex A. 2009.
    9. 9)
    10. 10)
      • 34. Tokoyoda, S., Tahata, K., Kamei, K., et al: ‘DC circuit breakers for HVDC grid applications HVDC and Power Electronics technology and developments’. CIGRE Symp., Lund, Sweden, 27–28 May 2015, paper 0135.
    11. 11)
    12. 12)
      • 5. CIGRE WG B4.52: ‘HVDC grid feasibility study’. CIGRE technical brochure 533, Paris, April 2013, pp. 2040.
    13. 13)
      • 30. Vrana, T.K., Yang, Y.T., Jovcic, D.: ‘The CIGRE B4 DC grid test system’, Electra, 2013, 237, (2), pp. 4857.
    14. 14)
    15. 15)
      • 31. Derakhshanfar, R., Jonsson, T.U., Steiger, U., et al: ‘Hybrid HVDC breaker – a solution for future HVDC system’. CIGRE 2014, 2014, paper B4-304.
    16. 16)
    17. 17)
      • 1. Liu, Z.Y.: ‘Global energy internet’ (China Electric Power Press, 2015), ISBN 978-7-5123-7052-4, (in Chinese).
    18. 18)
      • 43. Wang, X., Tang, G.F., Wei, X.G., et al: ‘A quasi zero-current-switching DC/DC Modular-Multilevel Converter (MMC) with LCL circuit for DC grids’, IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 14501454, doi: 10.1109/ECCE.2015.7309863.
    19. 19)
      • 26. An, T., Le, B., Yang, P., et al: ‘A determination method of DC voltage levels for DC grids’, Proc. CSEE, 2016, 36, (11), pp. 17.
    20. 20)
      • 37. Violleau, L., Grieshaber, W., Dupraz, J.P., et al: ‘Development and test of a 120 kV direct current circuit breaker’. CIGRE, Paris, 2014, paper B4-301.
    21. 21)
      • 12. Marquardt, R.: ‘Modular multilevel converter topologies with DC-short circuit current limitation’. Eighth Int. Conf. on Power Electronics – ECCE Asia, The ShillaJeju, Korea, 30 May–3 June 2011, pp. 16.
    22. 22)
      • 38. Eriksson, T., Backman, M., Halén, S.: ‘A low loss mechanical HVDC breaker for HVDC grid applications’. CIGRE 2014, 2014, paper B4-303.
    23. 23)
      • 8. Li, H.Z., Wu, W.X., He, Z.Y., et al: ‘Insulation coordination for the high-voltage bulk power transmission VSC-HVDC systems’, Power Syst. Technol., 2016, 40, (6), pp. 19041907.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 46. Yang, Y., Zhang, W.L., Tang, G.F., et al: ‘Control strategy of dual H-bridge power flow controller for DC grids’, Power Syst. Technol., 2015, 39, (9), pp. 25052510.
    29. 29)
      • 17. Wiget, R., Andersson, G.: ‘Optimal power flow for combined AC and multi-terminal HVDC grids based on VSC converters’. Proc. of IEEE Power and Energy Society General Meeting, July 2012, pp. 18.
    30. 30)
    31. 31)
      • 29. Wu, Y.N., An, T., Pang, H., et al: ‘Study on hybrid line commutated converter/voltage source converter DC grid test model’, Proc. CSEE, 2016, 36, (8), pp. 20772082.
    32. 32)
      • 11. Ergun, H., Beerten, J., Hertem, D.V.: ‘Building a new overlay grid for Europe’, 978-1-4673-2729-9/12/$31.00 ©2012 IEEE.
    33. 33)
      • 39. Tahata, K., Oukaili, S.E., Kamei, K., et al: ‘HVDC circuit breakers for HVDC grid applications’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, 2015.
    34. 34)
      • 33. Tang, G.F., Wei, X.G., Zhou, W.D., et al: ‘Research and development of a full-bridge cascaded hybrid HVDC breaker for VSC-HVDC applications’. CIGRE 2016, 2016, paper A3-117.
    35. 35)
    36. 36)
      • 28. An, T., Han, C.D., Wu, Y.N., et al: ‘HVDC grid test models for different application scenarios and load flow studies’, J. Modern Power Syst. Clean Energy, 2016, 5, (2), pp. 262274doi: 10.1007/s40565-016-0214-7.
    37. 37)
    38. 38)
    39. 39)
      • 45. Jiang, S.T., Qi, L., Cui, X., et al: ‘Power flow algorithm method for DC grid with power controller’, Power Syst. Technol., 2015, 39, (7), pp. 17931799.
    40. 40)
    41. 41)
      • 47. Barker, C.D., Whitehouse, R.S.: ‘A current flow controller for use in HVDC grids’. Proc. of 10th Int. Conf. on AC-DC Power Transmission, London, UK, December 2012, pp. 15.
    42. 42)
      • 40. Zeng, R., Xu, L., Yao, L.: ‘DC/DC converters based on hybrid MMC for HVDC grid interconnection’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, 2015.
    43. 43)
      • 9. Davidson, C.C., Trainer, D.R.: ‘Innovative concepts for hybrid multi-level converters for HVDC power transmission’. Ninth IET Int. Conf. on AC and DC Power Transmission, London, 2010.
    44. 44)
      • 35. Davidson, C., Whitehouse, R., Barker, C., et al: ‘A new ultra-fast HVDC circuit breaker for meshed DC networks’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, 2015.
    45. 45)
      • 36. Magnusson, J., Saers, R., Liljestrand, L.: ‘The commutation booster, a new concept to aid commutation in’. CIGRE Symp., Lund, Sweden, 27–28 May 2015, paper 0132.
    46. 46)
      • 25. CIGRE Working Group B4-57: ‘Guide for the development of models for HVDC converters in a HVDC grid’. CIGRE Technical Brochure 604, December 2014.
    47. 47)
      • 22. Samimi, S., Gruson, F., Guillaud, X., et al: ‘Control of DC bus voltage with a modular multilevel converter’’ (PowerTech, Eindhoven, 2015), 2015 IEEE Eindhoven, IEEE, pp. 1–6.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0010
Loading

Related content

content/journals/10.1049/hve.2017.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address