access icon openaccess Experimental investigation of the degradation mechanism of silicone rubber exposed to heat and gamma rays

Cable-grade silicone rubber was aged thermally or by combining heat and gamma-ray radiation, and resultant changes in chemical, thermal, mechanical and electrical properties were examined. The experimental results obtained in these analyses are clearly consistent with the mechanism that silicone rubber is degraded by forming cross-linked structures via formation of abundant siloxane bonds. With further progress of degradation, decomposition becomes dominant. Reflecting these mechanisms, mechanical properties deteriorate dramatically by losing elasticity. Both the real and imaginary parts of complex permittivity decrease, which is a contrastive difference from typical ageing behaviour of organic insulating polymers. In addition, both the elongation at break and indenter modulus are good indicators of degradation of silicone rubber.

Inspec keywords: elasticity; ageing; elongation; silicone rubber; permittivity

Other keywords: cable-grade silicone rubber; electrical properties; organic insulating polymers; elongation; heat rays; degradation mechanism; siloxane bonds; complex permittivity; mechanical properties; ageing behaviour; gamma rays; cross-linked structures

Subjects: Organic insulation

References

    1. 1)
      • 28. Labouriaua, A., Cadyb, C., Gilla, J., et al: ‘Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer’, Polym. Degrad. Stab., 2015, 116, pp. 6274, doi:10.1016/j.polymdegradstab.2015.03.009.
    2. 2)
      • 3. Niki, T., Hirai, N., Ohki, Y.: ‘Diagnosis of surface degradation of flame-retardant ethylene propylene diene copolymer by scanning probe microscopy’, J. Nucl. Sci. Technol., 2016, 53, (1), pp. 8286, doi: 10.1080/00223131.2015.1023379.
    3. 3)
      • 27. Nielsen, L.E.: ‘Cross-linking-effect on physical properties of polymers’, J. Macromol. Sci. Polym. Rev., 1969, 3, (1), pp. 69103, doi: 10.1080/15583726908545897.
    4. 4)
      • 16. ISO 37:2011: ‘Rubber, vulcanized or thermoplastic – determination of tensile stress–strain properties2011.
    5. 5)
      • 9. Ohki, Y., Yamada, T., Hirai, N.: ‘Precise location of the excessive temperature points in polymer insulated cables’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 20992106, doi: 10.1109/TDEI.2013.6678858.
    6. 6)
      • 26. Noll, W.: ‘Chemistry and technology of silicones’ (Academic Press, 1968, 1st edn.), pp. 233245.
    7. 7)
      • 10. Ohki, Y., Hirai, N.: ‘Location feasibility of degradation in cable through Fourier transform analysis of broadband impedance spectra’, Electr. Eng. Jpn., 2013, 183, (1), pp. 18, doi: 10.1002/eej.22384.
    8. 8)
      • 11. Brookhaven National Laboratory: ‘Assessment of environmental qualification practices and condition monitoring techniques for low-voltage electric cables: condition monitoring test results’. NUREG/CR-6704, United States Nuclear Regulation Commission, 2000, vol. 2, pp. 6(1)6(3).
    9. 9)
      • 20. Beshah, K., Mark, J.E., Ackerman, J.L., et al: ‘Characterization of PDMS model junctions and networks by solution and solid-state silicon-29 NMR spectroscopy’, J. Polym. Sci. B, Polym. Phys., 1986, 24, pp. 12071225, doi: 10.1002/polb.1986.090240602.
    10. 10)
      • 5. Shimada, A., Sugimoto, M., Kudoh, H., et al: ‘Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 21072116, doi: 10.1109/TDEI.2013.6678859.
    11. 11)
      • 25. Zhang, L.X., He, S.Y., Xu, Z., et al: ‘Damage effects and mechanisms of proton irradiation on methyl silicone rubber’, Mater. Chem. Phys., 2004, 83, pp. 255259, doi: 10.1016/j.matchemphys.2003.09.043.
    12. 12)
      • 13. International Atomic Energy Agency: ‘Assessment and management of ageing of major nuclear power plant components important to safety: in-containment instrumentation and control cables’. IAEA-TECDOC-1188, International Atomic Energy Agency, 2000, vol. I, pp. 136.
    13. 13)
      • 30. Celette, N., Stevenson, I., David, L., et al: ‘Irradiation effects on the relaxation behaviour of EPDM elastomers’, Polym. Int., 2004, 53, (5), pp. 495505, doi: 10.1002/pi.1425.
    14. 14)
      • 12. IEC/IEEE62582-3:2012: ‘Nuclear power plants – instrumentation and control important to safety – electrical equipment condition monitoring methods – part 3: elongation at break’, 2012.
    15. 15)
      • 8. Ohki, Y., Hirai, N.: ‘Effects of the structure and insulation material of a cable on the ability of a location method by FDR’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 7784, doi: 10.1109/TDEI.2015.005521.
    16. 16)
      • 18. Torrado, G., Garcia-Arieta, A., De los Rios, F., et al: ‘Quantitative determination of dimethicone in commercial tablets and capsules by Fourier transform infrared spectroscopy and antifoaming activity test’, J. Pharm. Biomed., 1999, 19, pp. 285292, doi: 10.1016/S0731-7085(98)00116-2.
    17. 17)
      • 17. Labouriau, A., Cox, J.D., Schoonover, J.R., et al: ‘Mössbauer, NMR and ATR-FTIR spectroscopic investigation of degradation in RTV siloxane foams’, Polym. Degrad. Stab., 2007, 92, (3), pp. 285292, doi: 10.1016/j.polymdegradstab. 2006.11.017.
    18. 18)
      • 2. Electric Power Research Institute: ‘Low-voltage environmentally-qualified cable license renewal industry report – revision 1’. TR-103841, Electric Power Research Institute, 1994, pp. 3(1)3(33).
    19. 19)
      • 21. Harris, R.K., Rpbins, M.L.: ‘29Si nuclear magnetic resonance studies of oligomeric and polymeric siloxanes: 4. Chemical shift effects of end-groups’, Polymer, 1978, 19, (10), pp. 11231132, doi: 10.1016/0032-3861(78)90057-5.
    20. 20)
      • 24. Miller, A.A.: ‘Radiation chemistry of poly-dimethyl-siloxane. I. crosslinking and gas yields’, J. Am. Chem. Soc., 1960, 82, (14), pp. 35193523, doi: 10.1021/ja01499a011.
    21. 21)
      • 14. Tamayo, J., Gracia, R.: ‘Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy’, J. Appl. Phys. Lett., 1997, 71, (16), pp. 23942396, doi: 10.1063/1.120039.
    22. 22)
      • 4. Shimada, A., Sugimoto, M., Kudoh, H., et al: ‘Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 1623, doi: 10.1109/TDEI.2013.004177.
    23. 23)
      • 6. Seguchi, T., Tamura, K., Shimada, A., et al: ‘Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing’, Radiat. Phys. Chem., 2012, 81, (11), pp. 17471751, doi: 10.1016/j.radphyschem.2012.06.011.
    24. 24)
      • 1. Japan Nuclear Energy Safety Organization: ‘Assessment of cable aging for nuclear power plants’. Final report, JNES-SS-0903, Japan Nuclear Energy Safety Organization, 2009, pp. 14.
    25. 25)
      • 15. IEC/IEEE62582-2:2016: ‘Nuclear power plants – instrumentation and control important to safety – electrical equipment condition monitoring methods – part 3: indenter modulus’, 2016.
    26. 26)
      • 7. Seguchi, T., Tamura, K., Ohshima, T., et al: ‘Degradation mechanisms of cable insulation materials during radiation–thermal ageing in radiation environment’, Radiat. Phys. Chem., 2011, 80, (2), pp. 268273, doi: 10.1016/j.radphyschem.2010.07.045.
    27. 27)
      • 29. Jiao, C., Wang, Z., Liang, X., et al: ‘Non-isothermal crystallization kinetics of silane crosslinked polyethylene’, Polym. Test., 2005, 24, (1), pp. 7180, doi: 10.1016/j.polymertesting.2004.07.007.
    28. 28)
      • 23. Izutsu, T., Komatsu, M., Ohki, Y., et al: ‘Estimation of talc contents in ethylene–propylene–diene copolymer by terahertz absorption spectroscopy’, IEEJ Trans. Fundam. Mater., 2016, 136, (2), pp. 8185, doi: 10.1541/ieejfms.136.81.
    29. 29)
      • 22. Arhart, R.J.: ‘The chemistry of ethylene propylene insulation. II’, IEEE Electr. Insul. Mag., 1993, 9, (6), pp. 1114, doi: 10.1109/57.245979.
    30. 30)
      • 19. Zhang, X., Xia, B., Ye, H., et al: ‘One-step sol–gel preparation of PDMS–silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings’, J. Mater. Chem., 2012, 22, pp. 1313213140, doi: 10.1039/C2JM31005 H.
    31. 31)
      • 31. Linde, E., Verardi, L., Fabinai, D., et al: ‘Dielectric spectroscopy as a condition monitoring technique for cable insulation based on crosslinked polyethylene’, Polym. Test., 2015, 44, pp. 135142, doi: 10.1016/j.polymertesting.2015.04.004.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2017.0009
Loading

Related content

content/journals/10.1049/hve.2017.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading