access icon openaccess NO X abatement from filtered diesel engine exhaust using battery-powered high-voltage pulse power supply

The dielectric barrier discharge-based non-thermal plasma technique is one of the most prominent techniques which give peerless results in controlling the concentration of NO X . However, when it comes to the automobile diesel engine, availability of high-voltage pulse power supply is the major constraint. In this study, battery-powered high-voltage pulse power supply for NO X treatment has been proposed. Two types of electrodes: rod type and rod with helical spring type are studied for the treatment of exhaust. Cascaded plasma-adsorbent technique has also been used to enhance NO X removal efficiency. Experiments have been conducted with two different gas flow rates, i.e. 4 l and 6 l/min at laboratory level and have got significant results toward removal of NO X . When the exhaust has been treated with plasma alone, the reactor with rod-type electrode has shown 85% NO X removal efficiency at a specific energy (SE) of 283 J/l with a flow rate of 4 l/min. When the plasma reactor is cascaded with the adsorbent reactor, both adsorbents: 13x molecular sieve (MS13x) and activated alumina are able to remove 100% of NO X with the proposed power supply at a lesser SE.

Inspec keywords: plasma devices; pulsed power supplies; air pollution control; exhaust gases; dielectric-barrier discharges; discharges (electric); diesel engines; plasma applications

Other keywords: NOx removal efficiency; NOx concentration control; gas flow rates; battery-powered high-voltage pulse power supply; helical spring; filtered diesel engine exhaust; adsorbent reactor; rod type electrodes; automobile diesel engine; NOx abatement; cascaded plasma-adsorbent technique; molecular sieve; dielectric barrier discharge-based nonthermal plasma technique; plasma reactor; activated alumina

Subjects: Plasma devices and applications; Engines; Dielectric materials and properties; Transportation; Pulsed power supplies; Environmental issues; Air quality and air pollution; Chemical variables control; Pollution control; Pollution detection and control; Dielectric-barrier discharges

References

    1. 1)
      • 6. Mohapatro, S., Rajanikanth, B.S.: ‘Cascaded cross flow DBD-adsorbent technique for NOX abatement in diesel engine exhaust’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (5), pp. 15431550, doi: 10.1109/TDEI.2010.5595556.
    2. 2)
      • 14. Puchkarev, V., Kharlov, A., Gundersen, M., et al: ‘Application of pulsed corona discharge to diesel exhaust remediation’. 12th IEEE Int. Pulsed Power Conf., Monterey, CA, June 2009, pp. 511514, doi: 10.1109/PPC.1999.825522.
    3. 3)
      • 18. Bhattacharyya, A., Rajanikanth, B.S.: ‘Performance of helical and straight-wire corona electrodes for NOX abatement under AC pulse energizations’, Int. J. Plasma Environ. Sci. Technol., 2013, 7, (2), pp. 148156.
    4. 4)
      • 16. Srinivasan, A.D., Rajanikanth, B.S., Mahapatro, S.: ‘Corona treatment for NOX reduction from stationary diesel engine exhaust impact of nature of energization and exhaust composition’. Electrostatic Joint Conf., MA, USA, January 2009, pp. 17.
    5. 5)
      • 9. Wang, J., Cai, Y., Wang, J., et al: ‘Experimental study of non-thermal plasma injection system converting NOX in simulated diesel emissions’. Int. Conf. Optoelectronics and Image Processing, Hainan, China, November 2010, pp. 534537, doi: 10.1109/ICOIP.2010.22.
    6. 6)
      • 8. Cheng-Hang, Z., Chang-Ri, X., Xiang, G., et al: ‘Simultaneous absorption of NOX and SO2 in oxidant-enhanced limestone slurry’, Environ. Prog. Sustain. Energy, 2013, 33, (4), pp. 11711179, doi: 10.1002/ep.11903.
    7. 7)
      • 13. Khacef, A., Cormier, J.M., Pouvesle, J.M.: ‘NOX remediation in oxygen-rich exhaust gas using atmospheric pressure non-thermal plasma generated by a pulsed nanosecond dielectric barrier discharge’, J. Phys. D, Appl. Phys., 2002, 35, (13), pp. 14911498. Available at http://stacks.iop.org/JPhysD/35/1491.
    8. 8)
      • 4. Singleton, D.R., Sinibaldi, J.O., Brophy, C.M., et al: ‘Compact pulsed-power system for transient plasma ignition’, IEEE Trans. Plasma Sci., 2009, 37, (12), pp. 22752279, doi: 10.1109/TPS.2009.2024672.
    9. 9)
      • 3. Srinivasan, A.D., Rajanikanth, B.S.: ‘Pulsed plasma treatment for NOX reduction from filtered/unfiltered stationary diesel engine exhaust’. IEEE Industrial Applications Annual Meeting, Louisiana, USA, September 2007, pp. 18931900, doi: 10.1109/IAS.2007.289.
    10. 10)
      • 5. Okubo, M., Kuroki, T., Yoshida, K., et al: ‘Single-stage simultaneous reduction of diesel particulate and NOX using oxygen-lean nonthermal plasma application’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 21432150, doi: 10.1109/TIA.2010.2071070.
    11. 11)
      • 17. Wedaa, H., Abdel-Salam, M., Ahmed, A., et al: ‘NOX removal using dielectric barrier discharges in a wire-cylinder pellets-filled reactor stressed by high pulse voltage’. 12th Int. Conf. Electrostatic Precipitation, Nuremberg, Germany, May 2011.
    12. 12)
      • 15. Yoshida, K., Okubo, M., Kuroki, T., et al: ‘NOX after treatment using thermal desorption and nitrogen nonthermal plasma reduction’, IEEE Trans. Ind. Appl., 2008, 44, (5), pp. 14031409, doi: 10.1109/TIA.2008.2002216.
    13. 13)
      • 10. Arai, R., Kaneda, N., Ikemoto, T., et al: ‘Investigation of discharge appearance in reactor and removal ratio on NOX treatment using nanosecond pulsed powers’. Pulsed Power Conf., TX, USA, May–June 2015, pp. 15, doi: 10.1109/PPC.2015.7296872.
    14. 14)
      • 2. Kawada, Y., Kaneko, T., Itoz, T., et al: ‘Barrier discharge characteristics of wire-pole electrodes with ferro-electric barriers’. Conf. on Electrical Insulation and Dielectric Phenomena, Kitchener, ON, Canada, October 2001, pp. 388391, doi: 10.1109/CEIDP.2001.963564.
    15. 15)
      • 1. Takaki, K., Toda, K., Kudo, S., et al: ‘Flue gas treatment using multipoint barrier discharge with pulse modulator’. Int. Conf. on High-Power Particle Beams, Nagaoka, Japan, June 2000, pp. 677680.
    16. 16)
      • 11. Jolibois, J., Takashima, K., Mizuno, A.: ‘Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOX removal’, J. Electrost., 2012, 70, (3), pp. 300308. Available at http://dx.doi.org/10.1016/j.elstat.2012.03.011.
    17. 17)
      • 12. Saavedra, H.M., Pacheco, M.P., Pacheco-Sotelo, J.O., et al: ‘Modeling and experimental study on nitric oxide treatment using dielectric barrier discharge’, IEEE Trans. Plasma Sci., 2007, 35, (5), pp. 15331540, doi: 10.1109/TPS.2007.905951.
    18. 18)
      • 7. Malik, M.A., Kolb, J.F., Sun, Y., et al: ‘Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges’, J. Hazardous Mater., 2011, 197, pp. 220228, doi: 10.1016/j.jhazmat.2011.09.079.
    19. 19)
      • 19. Mohapatro, S., Rajanikanth, B.S.: ‘Studies on NOX removal from diesel engine exhaust using duct-type DBD reactor’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24892496, doi: 10.1109/TIA.2014.2365049.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2016.0084
Loading

Related content

content/journals/10.1049/hve.2016.0084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading