Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications

Pulsed discharge plasma and its application is one of the promising directions in civilian areas of pulsed power technology. In order to promote the research and development of the theory and application technology for pulsed discharge plasma, in this paper, recent progress on the mechanism of nanosecond-pulse gas discharge and the characteristics and applications of typical pulsed plasma at the Institute of Electrical Engineering, Chinese Academy of Sciences is reviewed. Firstly, progress on mechanism of nanosecond-pulse discharge based on runaway electrons and measurement technology of runaway electrons is introduced. Then, the characteristics of three typical discharges, including direct-driven pulsed discharge, pulsed dielectric barrier discharge and pulsed plasma jet, are reviewed. Furthermore, typical plasma applications of pulsed plasma on surface modification and methane conversion are presented.

References

    1. 1)
      • 22. Zhang, C., Tarasenko, V.F., Gu, J., et al: ‘A comparison between spectra of runaway electron beams in SF6 and air’, Phys. Plasmas, 2015, 22, (12), p. 123516.
    2. 2)
      • 45. Lu, X.P., Laroussi, M., Puech, V.: ‘On atmospheric-pressure non-equilibrium plasma jets and plasma bullets’, Plasma Sources Sci. Technol., 2012, 21, (3), p. 034005.
    3. 3)
      • 4. Shao, T., Yan, P.: ‘Atmospheric pressure gas discharge and plasma applications’ (Science Publishers, Beijing, China, 2015).
    4. 4)
      • 28. Pai, D.Z., Stancu, G.D., Lacoste, D.A., et al: ‘Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime’, Plasma Sources Sci. Technol., 2009, 18, (4), p. 045030.
    5. 5)
      • 8. Wilson, C.T.R.: ‘The acceleration of β-particles in strong electric fields such as those of thunderclouds’. Mathematical Proc. Cambridge Philosophical Society, 1925, pp. 534538.
    6. 6)
      • 41. Lu, X., Laroussi, M.: ‘Temporal and spatial emission behaviour of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses’, J. Phys. D Appl. Phys., 2006, 39, (6), p. 1127.
    7. 7)
      • 39. Wang, X.: ‘Dielectric barrier discharge and its applications’, High Volt. Eng., 2009, 35, (1), pp. 111.
    8. 8)
      • 55. Shao, T., Yang, W., Zhang, C., et al: ‘Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities’, Europhys. Lett., 2014, 107, (6), p. 65004.
    9. 9)
      • 15. Nguyen, C.V., Van Deursen, A.P.J., Van Heesch, E.J.M., et al: ‘X-ray emission in streamer-corona plasma’, J. Phys. D Appl. Phys., 2010, 43, (2), p. 025202.
    10. 10)
      • 20. Tarasenko, V.F., Baksht, E.K., Burachenko, A.G., et al: ‘Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen’, Tech. Phys. Lett., 2010, 36, (4), pp. 375378.
    11. 11)
      • 31. Tarasenko, V.F., Baksht, E.K., Burachenko, A.G., et al: ‘Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure’, Plasma Dev. Oper., 2008, 16, (4), pp. 267298.
    12. 12)
      • 49. Walsh, J.L., Kong, M.G.: ‘Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses’, Appl. Phys. Lett., 2007, 91, (22), p. 221502.
    13. 13)
      • 35. Shao, T., Tarasenko, V.F., Zhang, C., et al: ‘Diffuse discharge produced by repetitive nanosecond pulses in open air, nitrogen, and helium’, J. Appl. Phys., 2013, 113, (9), p. 093301.
    14. 14)
      • 19. Babich, L.P., Loiko, T.V.: ‘Peculiarities of detecting pulses of runaway electron and X-rays generated by high-voltage nanosecond discharges in open atmosphere’, Plasma Phys. Rep., 2010, 36, (3), pp. 263270.
    15. 15)
      • 50. Zhang, C., Shao, T., Wang, R., et al: ‘A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond-and microsecond-pulse generators in helium’, Phys. Plasmas, 2014, 21, (10), p. 103505.
    16. 16)
      • 54. Wang, R., Zhang, K., Shen, Y., et al: ‘Effect of pulse polarity on the temporal and spatial emission of an atmospheric pressure helium plasma jet’, Plasma Sources Sci. Technol., 2016, 25, (1), p. 015020.
    17. 17)
      • 44. Shao, T., Zhang, C., Yu, Y., et al: ‘Temporal evolution of nanosecond-pulse dielectric barrier discharges in open air’, Europhys. Lett., 2012, 97, (5), p. 55005.
    18. 18)
      • 2. Shao, T., Zhang, C., Long, K., et al: ‘Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air’, Appl. Surf. Sci., 2010, 256, (12), pp. 38883894.
    19. 19)
      • 24. Zhang, C., Shao, T., Ma, H., et al: ‘Experimental study on conduction current of positive nanosecond-pulse diffuse discharge at atmospheric pressure’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 13041314.
    20. 20)
      • 46. Ghasemi, M., Olszewski, P., Bradley, J.W., et al: ‘Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array’, J. Phys. D Appl. Phys., 2013, 46, (5), p. 052001.
    21. 21)
      • 10. Noggle, R.C., Krider, E.P., Wayland, J.R.: ‘A search for X rays from helium and air discharges at atmospheric pressure’, J. Appl. Phys., 1968, 39, (10), pp. 47464748.
    22. 22)
      • 17. Zhang, C., Shao, T., Tarasenko, V., et al: ‘X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure’, Phys. Plasmas, 2012, 19, (12), p. 123516.
    23. 23)
      • 23. Shao, T., Zhang, C., Niu, Z., et al: ‘Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes’, Appl. Phys. Lett., 2011, 98, (2), p. 021503.
    24. 24)
      • 30. Tarasenko, V.F., Baksht, E.K., Shut'ko, Y.V.: ‘Diffuse discharges in atmospheric pressure air in repetitive pulsed mode with point-to-plane and point-to-point gaps’, IEEE Trans. Plasma Sci., 2011, 39, (11), pp. 20962097.
    25. 25)
      • 36. Zhang, C., Shao, T., Niu, Z., et al: ‘Diffuse and filamentary discharges in open air driven by repetitive high-voltage nanosecond pulses’, IEEE Trans. Plasma Sci., 2011, 39, (11), pp. 22082209.
    26. 26)
      • 34. Sun, A.B., Ebert, U.: ‘A time scale for electrical screening in pulsed gas discharges’, J. Phys. D Appl. Phys., 2014, 47, (44), p. 365203.
    27. 27)
      • 5. Shao, T., Zhang, C., Wang, R., et al: ‘Atmospheric pressure pulsed discharge and plasma applications’, High Volt. Eng., 2016, 42, (3), pp. 685705.
    28. 28)
      • 13. Byszewski, W.W., Reinhold, G.: ‘X-ray diagnostics of runaway electrons in fast gas discharges’, Phys. Rev. A, 1982, 26, (5), p. 2826.
    29. 29)
      • 58. Kado, S., Sekine, Y., Nozaki, T., et al: ‘Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion’, Catal. Today, 2004, 89, (1), pp. 4755.
    30. 30)
      • 1. Nie, Q.Y., Cao, Z., Ren, C.S., et al: ‘A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine’, New J. Phys., 2009, 11, (11), p. 115015.
    31. 31)
      • 60. Tu, X., Gallon, H.J., Twigg, M.V., et al: ‘Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor’, J. Phys. D Appl. Phys., 2011, 44, (27), p. 274007.
    32. 32)
      • 57. Zhang, C., Zhou, Z., Wang, R., et al: ‘Modification of copper surface by nanosecond-pulse diffuse discharges at atmospheric pressure’, High Volt. Eng., 2015, 41, (5), pp. 14581465.
    33. 33)
      • 21. Zhang, C., Tarasenko, V.F., Gu, J., et al: ‘Supershortavalanche electron beam in SF6 and krypton’, Phys. Rev. Accel. Beams, 2016, 19, (3), p. 030402.
    34. 34)
      • 12. Tarasova, L.V., Khudyakova, L.N., Loiko, T.V., et al: ‘Fast electrons and X rays from nanosecond gas discharges at 0.1–760 Torr’, Sov. Phys. Tech. Phys., 1974, 19, (3), pp. 351353.
    35. 35)
      • 16. Zhang, C., Shao, T., Yu, Y., et al: ‘Detection of x-ray emission in a nanosecond discharge in air at atmospheric pressure’, Rev. Sci. Instrum., 2010, 81, (12), p. 123501.
    36. 36)
      • 53. Jiang, C., Chen, M.T., Gundersen, M.A.: ‘Polarity-induced asymmetric effects of nanosecond pulsed plasma jets’, J. Phys. D Appl. Phys., 2009, 42, (23), p. 232002.
    37. 37)
      • 61. Liu, C., Mallinson, R., Lobban, L.: ‘Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma’, J. Catal., 1998, 179, (1), pp. 326334.
    38. 38)
      • 63. Taghvaei, H., Jahanmiri, A., Rahimpor, M.R., et al: ‘Hydrogen production through plasma cracking of hydrocarbons: effect of carrier gas and hydrocarbon type’, Chem. Eng. J., 2013, 226, (15), pp. 384392.
    39. 39)
      • 26. Janda, M., Machala, Z., Dvonč, L., et al: ‘Self-pulsing discharges in pre-heated air at atmospheric pressure’, J. Phys. D Appl. Phys., 2015, 48, (3), p. 035201.
    40. 40)
      • 9. Frankel, S., Highland, V., Sloan, T., et al: ‘Observation of X-rays from spark discharges in a spark chamber’, Nucl. Instrum. Methods, 1966, 44, (2), pp. 345348.
    41. 41)
      • 11. Stankevich, Y.L., Kalinin, V.G.: ‘Fast electrons and X-ray radiation during the initial stage of growth of a pulsed spark discharge in air’, Sov. Phys. Dokl., 1968, 12, (11), pp. 10411043.
    42. 42)
      • 6. Tarasenko, V.F.: ‘Runaway electrons preionized diffuse discharges’ (Nova Science Publishers, New York, USA, 2014), pp. 1940.
    43. 43)
      • 3. Venkateswaran, N., Laxminarayan, L.R., Noel, T.C.: ‘Characterization of a high-frequency pulsed plasma jet actuator for supersonic flow control’, AIAA J., 2010, 48, (2), pp. 297305.
    44. 44)
      • 56. Walsh, J.L., Kong, M.G.: ‘10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces’, Appl. Phys. Lett., 2007, 91, p. 251504.
    45. 45)
      • 38. Kanazawa, S., Kogoma, M., Moriwaki, T., et al: ‘Stable glow plasma at atmospheric pressure’, J. Phys. D Appl. Phys., 1988, 21, (5), p. 838.
    46. 46)
      • 27. Pai, D.Z., Lacoste, D.A., Laux, C.O.: ‘Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime’, Plasma Sources Sci. Technol., 2010, 19, (6), p. 065015.
    47. 47)
      • 7. Shao, T., Yan, P., Zhang, S., et al: ‘Review on nanosecond-pulse discharge mechanism in gases’, High Power Laser Part. Beams, 2008, 20, (11), pp. 19281931.
    48. 48)
      • 37. Li, L., Liu, Y.L., Teng, Y., et al: ‘Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes’, Phys. Plasmas, 2014, 21, (7), p. 073506.
    49. 49)
      • 52. Jiang, N., Ji, A., Cao, Z.: ‘Atmospheric pressure plasma jet: effect of electrode configuration, discharge behavior, and its formation mechanism’, J. Appl. Phys., 2009, 106, (1), p. 013308.
    50. 50)
      • 62. Ghorbanzadeh, A.M., Lotfalipour, R., Rezaei, S.: ‘Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma’, Int. J. Hydrog. Energy, 2009, 34, (1), pp. 293298.
    51. 51)
      • 51. Xian, Y., Zhang, P., Lu, X., et al: ‘From short pulses to short breaks: exotic plasma bullets via residual electron control’, Sci. Rep., 2013, 3, (4), pp. 132132.
    52. 52)
      • 18. Mesyats, G.A., Yalandin, M.I., Reutova, A.G., et al: ‘Picosecond runaway electron beams in air’, Plasma Phys. Rep., 2012, 38, (1), pp. 2945.
    53. 53)
      • 32. Sun, A.B., Teunissen, J., Ebert, U., et al: ‘Why isolated streamer discharges hardly exist above the breakdown field in atmospheric air’, Geophys. Res. Lett., 2013, 40, (10), pp. 24172422.
    54. 54)
      • 43. Zhang, C., Shao, T., Long, K., et al: ‘Characteristics of nanosecond-pulse dielectric barrier discharge in atmospheric air’, Proc. CSEE, 2010, 30, (7), pp. 111117.
    55. 55)
      • 29. Tardiveau, P., Moreau, N., Bentaleb, S., et al: ‘Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage’, J. Phys. D Appl. Phys., 2009, 42, (17), p. 175202.
    56. 56)
      • 33. Sun, A.B., Teunissen, J., Ebert, U., et al: ‘The inception of pulsed discharges in air: simulations in background fields above and below breakdown’, J. Phys. D Appl. Phys., 2014, 47, (44), p. 445205.
    57. 57)
      • 42. Shao, T., Long, K., Zhang, C., et al: ‘Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure’, J. Phys. D Appl. Phys., 2008, 41, (21), p. 215203.
    58. 58)
      • 14. Tarasenko, V.F., Baksht, E.K., Burachenko, A.G., et al: ‘Supershort avalanche electron beams and X-rays in atmospheric-pressure air’, IEEE Trans. Plasma Sci., 2010, 38, (4), pp. 741750.
    59. 59)
      • 48. Zhang, C., Shao, T., Zhou, Y., et al: ‘Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses’, Appl. Phys. Lett., 2014, 105, (4), p. 044102.
    60. 60)
      • 47. Walsh, J.L., Olszewski, P., Bradley, J.W.: ‘The manipulation of atmospheric pressure dielectric barrier plasma jets’, Plasma Sources Sci. Technol., 2012, 21, (3), p. 034007.
    61. 61)
      • 25. Ono, R., Oda, T.: ‘Formation and structure of primary and secondary streamers in positive pulsed corona discharge—effect of oxygen concentration and applied voltage’, J. Phys. D Appl. Phys., 2003, 36, (16), p. 1952.
    62. 62)
      • 40. Ayan, H.: ‘Uniform dielectric barrier discharge with nanosecond pulse excitation for biomedical applications’, Drexel University, 2009.
    63. 63)
      • 59. Thanyachotpaiboon, K., Chavadej, S., Caldwell, T.A., et al: ‘Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas’, AIChE J., 1998, 44, (10), pp. 22522257.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2016.0014
Loading

Related content

content/journals/10.1049/hve.2016.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address