access icon openaccess Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA

In this Letter, the field programmable gate array (FPGA) implementation of a foetal heart rate (FHR) monitoring system is presented. The system comprises a preprocessing unit to remove various types of noise, followed by a foetal electrocardiogram (FECG) extraction unit and an FHR detection unit. To improve the precision and accuracy of the arithmetic operations, a floating-point unit is developed. A least mean squares algorithm-based adaptive filter (LMS-AF) is used for FECG extraction. Two different architectures, namely series and parallel, are proposed for the LMS-AF, with the series architecture targeting lower utilisation of hardware resources, and the parallel architecture enabling less convergence time and lower power consumption. The results show that it effectively detects the R peaks in the extracted FECG with a sensitivity of 95.74–100% and a specificity of 100%. The parallel architecture shows up to an 85.88% reduction in the convergence time for non-invasive FECG databases while the series architecture shows a 27.41% reduction in the number of flip flops used when compared with the existing FPGA implementations of various FECG extraction methods. It also shows an increase of 2–7.51% in accuracy when compared to previous works.

Inspec keywords: field programmable gate arrays; flip-flops; electrocardiography; medical signal processing; obstetrics; adaptive filters; least mean squares methods

Other keywords: extracted FECG; arithmetic operations; lower utilisation; mean squares; LMS adaptive filter-based FECG extraction; preprocessing unit; FECG extraction methods; convergence time; foetal heart rate monitoring system; FPGA implementation; parallel architecture; floating-point unit; existing FPGA implementations; noninvasive FECG databases; LMS-AF; FHR detection unit; foetal electrocardiogram extraction unit; series architecture

Subjects: Other topics in statistics; Biology and medical computing; Signal processing and detection; Logic and switching circuits; Bioelectric signals; Interpolation and function approximation (numerical analysis); Electrodiagnostics and other electrical measurement techniques; Digital signal processing; Other topics in statistics; Filtering methods in signal processing; Logic circuits; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 6. Sutha, P., Jayanthi, V.: ‘Fetal electrocardiogram extraction and analysis using adaptive noise cancellation and wavelet transformation techniques’, J. Med. Syst., 2018, 42, (21).
    2. 2)
      • 29. Le, T., Moravec, A., Huerta, M., et al: ‘Unobtrusive continuous monitoring of fetal cardiac electrophysiology in the home setting’. IEEE Sensors, New Delhi, 2018, pp. 14.
    3. 3)
      • 30. Gini, J.R., Ramachandran, K.I., Nair, R.H., et al: ‘Portable fetal ECG extractor from abdECG’. Int. Conf. on Communication and Signal Processing (ICCSP), Melmaruvathur, 2016, pp. 845848.
    4. 4)
      • 10. Hatai, I., Chakrabarti, I., Banerjee, S.: ‘FPGA implementation of a fetal heart rate measuring system’. 2nd Int. Conf. on Advances in Electrical Engineering (ICAEE 2013), 2013, pp. 160164.
    5. 5)
      • 25. IEEE standard for binary floating-point arithmetic’, 1985 (ANSI/IEEE Std 754–1985).
    6. 6)
      • 19. Sahin, S., Kavak, A., Becerikli, Y., et al: ‘Implementation of floating point arithmetics using an FPGA’, In: ‘Mathematical methods in engineering’ (Springer, Dordrecht, The Netherlands, 2007), pp. 445453.
    7. 7)
      • 26. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al: ‘Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals’, Circ. Electron. Pages, 2000, 101, (23), pp. e215e220.
    8. 8)
    9. 9)
    10. 10)
      • 27. De Moor, B.L.R. (ed.): ‘DaISy: Database for the Identification of Systems’, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/sista/daisy/, May 2019. [Used dataset: Cutaneous potential recordings of a pregnant woman, section Biomedical Systems, 96–012.].
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 7. Hassanpour, H., Parsaei, A.: ‘Fetal ECG extraction using wavelet transform’. 2006 Int. Conf. on Computational Intelligence for Modelling Control and Automation (CIMCA'06), Sydney, 2006, pp. 179179.
    15. 15)
    16. 16)
      • 24. von Steinburg, S.P., Boulesteix, A.L., Lederer, C., et al: ‘What is the ‘normal’ fetal heart rate?’, PeerJ, 2013, 1, (82).
    17. 17)
      • 17. Chareonsak, C., Sana, F., Wei, Y., et al: ‘Design of FPGA hardware for a real-time blind source separation of fetal ECG signals’, IEEE Int. Workshop on Biomed. Circuits Syst., 2004, S2, (4), pp. 1316.
    18. 18)
    19. 19)
    20. 20)
      • 9. Sameni, R., Clifford, G.D.: ‘A review of fetal ECG signal processing issues and promising directions’, Open Pacing Electrophysiol. Ther. J., 2010, 3, pp. 420.
    21. 21)
      • 20. Chua, L.O., Desoer, C.A., Kuh, E.S.: ‘Linear and nonlinear circuits’ (McGraw-Hill, New York, 1987).
    22. 22)
      • 4. Ping, G., Ee-Chien, C., Wyse, L.: ‘Blind separation of fetal ECG from single mixture using SVD and ICA’. 4th Int. Conf. on Information, Communications & Signal Processing and 4th Pacific-Rim Conf. on Multimedia, Singapore, 2003, vol. 3, pp. 14181422.
    23. 23)
      • 12. Arias-Ortega, R., Gaitan-Gonzalez, M.J., Yanez-Suarez, O.: ‘Implementation of a real-time algorithm for maternal and fetal heart rate monitoring in a digital signal controller platform’. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology, Buenos Aires, 2010, pp. 23542357.
    24. 24)
      • 14. Pani, D., Dessi, A., Cabras, B., et al: ‘A real-time algorithm for tracking of foetal ECG sources obtained by block-on-line BSS techniques’. Computing in Cardiology, Krakow, 2012, 39, pp. 6568.
    25. 25)
      • 16. Hasan, M.A., Ibrahimy, M.I., Reaz, M., et al: ‘VHDL modeling of FECG extraction from the composite abdominal ECG using artificial intelligence’. Proc. IEEE Int. Conf. on Industrial Technology, ICIT, Gippsland, VIC, Australia, 2009, pp. 15.
    26. 26)
      • 31. Lima-Herrera, S.L., Alvarado-Serrano, C., Hernandez-Rodriguez, P.R.: ‘Fetal ECG extraction based on adaptive filters and wavelet transform: validation and application in fetal heart rate variability analysis’. 13th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 2016, pp. 16.
    27. 27)
      • 21. Awodeyi, A.E., Alty, S.R., Ghavami, M.: ‘Median based method for baseline wander removal in photoplethysmogram signals’. IEEE Int. Conf. on Bioinformatics and Bioengineering, Boca Raton Florida, 2014, pp. 311314.
    28. 28)
      • 8. Reaz, M.B.I., Wei, L.S.: ‘Adaptive linear neural network filter for fetal ECG extraction’. Proc. Int. Conf. on intelligent sensing and information processing, Chennai, India, 2004, pp. 321324.
    29. 29)
      • 22. Widrow, B., Stearns, S.D.: ‘Adaptive signal processing’ (Prentice-Hall, Englewood Cliffs, NJ, 1985).
    30. 30)
      • 18. Ibrahimy, M.I., Reaz, M.B.I., Yasin, F.M., et al: ‘Fetal QRS complex detection algorithm for FPGA implementation’. IEEE Int. Conf. on Computational Intelligence for Modelling, Control and Automation, and Int. Conf. on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), Vienna, 2005, pp. 846850.
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2020.0016
Loading

Related content

content/journals/10.1049/htl.2020.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading