access icon openaccess Stimulus waveform design for decreasing charge and increasing stimulation selectivity in retinal prostheses

Retinal degenerative diseases, such as retinitis pigmentosa, begin with damage to the photoreceptor layer of the retina. In the absence of presynaptic input from photoreceptors, networks of electrically coupled AII amacrine and cone bipolar cells have been observed to exhibit oscillatory behaviour and result in spontaneous firing of ganglion cells. This ganglion cell activity could interfere with external stimuli provided by retinal prosthetic devices and potentially degrade their performance. In this work, the authors computationally investigate stimulus waveform designs, which can improve the performance of retinal prostheses by suppressing undesired spontaneous firing of ganglion cells and generating precise temporal spiking patterns. They utilise a multi-scale computational model for electrical stimulation of degenerated retina based on the admittance method and NEURON simulation environments. They present a class of asymmetric biphasic pulses that can generate precise ganglion cell firing patterns with up to 55% lower current requirements compared to traditional symmetric biphasic pulses. This lower current results in activation of only proximal ganglion cells, provides more focused stimulation and lowers the risk of tissue damage.

Inspec keywords: neurophysiology; eye; bioelectric potentials; biological tissues; prosthetics; cellular biophysics; diseases

Other keywords: photoreceptor layer; proximal ganglion cells; retinal degenerative diseases; oscillatory behaviour; tissue damage; retinal prostheses; retinal prosthetic devices; electrical stimulation; multiscale computational model; degenerated retina; temporal spiking patterns; ganglion cell activity; presynaptic input; Retinitis pigmentosa; photoreceptors; cone bipolar cells

Subjects: Electrical activity in neurophysiological processes; Cellular biophysics; Prosthetics and orthotics; Physiological optics, vision; Prosthetics and other practical applications

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 14. Cantrell, D.R., Troy, J.B.: ‘Extracellular stimulation of mouse retinal ganglion cells with non-rectangular voltage-controlled waveforms’. Conf. Proc. IEEE Eng. Med. Biol. Soc., Minneapolis, USA, September 2009, pp. 642645.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 15. Nakano, Y., Terasawa, Y., Kanda, H., et al: ‘Sinusoidal electrical pulse more efficiently evokes retinal excitation than rectangular electrical pulse in retinal prostheses’, Sens. Mater., 2017, 29, (12), pp. 16671677.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 17. Nakano, Y., Terasawa, Y., Kanda, H., et al: ‘Effects of asymmetric electrical pulse on retinal excitement for retinal prostheses’, Sens. Mater., 2018, 30, (2), pp. 315326.
    33. 33)
    34. 34)
      • 27. Loizos, K., Lazzi, G., Lauritzen, J.S., et al: ‘A multi-scale computational model for the study of retinal prosthetic stimulation’. Conf. Proc. IEEE Eng. Med. Biol. Soc., Chicago, USA, August 2014, pp. 61006103.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2019.0115
Loading

Related content

content/journals/10.1049/htl.2019.0115
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading