Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess ARssist: augmented reality on a head-mounted display for the first assistant in robotic surgery

Loading full text...

Full text loading...

/deliver/fulltext/htl/5/5/HTL.2018.5065.html;jsessionid=6psq0no939mac.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2018.5065&mimeType=html&fmt=ahah

References

    1. 1)
      • 2. Martin, S.: ‘The role of the first assistant in robotic assisted surgery’, Br. J. Perioper. Nurs., 2004, 14, (4), pp. 159163.
    2. 2)
      • 19. Wang, J., Qian, L., Azimi, E., et al: ‘Prioritization and static error compensation for multi-camera collaborative tracking in augmented reality’. IEEE Virtual Reality (VR), Los Angeles, CA, USA, March 2017, pp. 335336.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 21. Abawi, D.F., Bienwald, J., Dorner, R.: ‘Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit’. Proc. of the 3rd IEEE/ACM Int. Symp. on Mixed and Augmented Reality, Arlington, VA, USA, November 2004, pp. 260261.
    8. 8)
      • 24. Owen, C.B., Zhou, J., Tang, A., et al: ‘Display-relative calibration for optical see-through head-mounted displays’. IEEE/ACM Intl. Symp. on Mixed and Augmented Reality (ISMAR), Arlington, VA, USA, November 2004, pp. 7078.
    9. 9)
      • 25. Qian, L., Azimi, E., Kazanzides, P., et al: ‘Comprehensive tracker based display calibration for holographic optical see-through head-mounted display’, 2017, arXiv:1703.05834.
    10. 10)
      • 17. ‘Meta’, Available at http://www.metavision.com/, accessed: 6 June 2018.
    11. 11)
    12. 12)
      • 32. Hololensartoolkit’. Available at https://github.com/qian256/HoloLensARToolKit, accessed: 6 June 2018.
    13. 13)
      • 33. Locatable camera’. Available at https://docs.microsoft.com/en-us/windows/mixed-reality/locatable-camera, accessed: 6 June 2018.
    14. 14)
      • 31. Kato, H., Billinghurst, M.: ‘Marker tracking and HMD calibration for a video-based augmented reality conferencing system’. IEEE/ACM Intl. Workshop on Augmented Reality (IWAR), San Francisco, CA, USA, October 1999, pp. 8594.
    15. 15)
    16. 16)
      • 34. Fontanelli, G., Ficuciello, F., Villani, L., et al: ‘Da Vinci research kit: PSM and MTM dynamic modelling’. IROS Workshop on Shared Platforms for Medical Robotics Research, Vancouver, Canada, 2017.
    17. 17)
    18. 18)
    19. 19)
      • 11. Lo, B., Chung, A.J., Stoyanov, D., et al: ‘Real-time intraoperative 3D tissue deformation recovery’. IEEE Intl. Symp. on Biomedical Imaging: From Nano to Macro (ISBI), Paris, France, May 2008, pp. 13871390.
    20. 20)
      • 30. Quigley, M., Conley, K., Gerkey, B., et al: ‘ROS: an open-source robot operating system’. ICRA Workshop on Open Source Software, Kobe, Japan, 2009.
    21. 21)
      • 18. Thrun, S., Leonard, J.J.: ‘Simultaneous localization and mapping’, in Siciliano, B., Khatib, O. (Eds.): ‘Springer handbook of robotics’ (Springer, Berlin & Heidelberg, 2008), pp. 871889.
    22. 22)
      • 8. Chen, L., Day, T.W., Tang, W., et al: ‘Recent developments and future challenges in medical mixed reality’. IEEE Intl. Symp. on Mixed and Augmented Reality (ISMAR), Nantes, France, October 2017, pp. 123135.
    23. 23)
      • 28. Kazanzides, P., Chen, Z., Deguet, A., et al: ‘An open-source research kit for the da Vinci R surgical system’. IEEE Intl. Conf. on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014, pp. 64346439.
    24. 24)
      • 14. Koppel, D., Wang, Y.-F., Lee, H.: ‘Image-based rendering and modeling in videoendoscopy’. IEEE Intl. Symp. on Biomedical Imaging: Nano to Macro, Arlington, VA, USA, April 2004, pp. 269272.
    25. 25)
    26. 26)
    27. 27)
      • 26. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, New York, NY, USA, 2003).
    28. 28)
    29. 29)
      • 37. Vagvolgyi, B., Niu, W., Chen, Z., et al: ‘Augmented virtuality for model-based teleoperation’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017, pp. 38263833.
    30. 30)
    31. 31)
      • 23. Itoh, Y., Klinker, G.: ‘Interaction-free calibration for optical see-through head-mounted displays based on 3d eye localization’. IEEE Symp. on 3D User Interfaces (3DUI), Minneapolis, MN, USA, March 2014, pp. 7582.
    32. 32)
    33. 33)
      • 29. DiMaio, S., Hasser, C.: ‘The da Vinci research interface’. MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions, Midas Journal, 2008, Available at http://hdl.handle.net/10380/1464.
    34. 34)
    35. 35)
      • 27. Qian, L., Unberath, M., Yu, K., et al: ‘Towards virtual monitors for image guided interventions-real-time streaming to optical see-through head-mounted displays’, 2017, arXiv:1710.00808.
    36. 36)
    37. 37)
      • 35. Azimi, E., Qian, L., Kazanzides, P., et al: ‘Robust optical see-through head-mounted display calibration: taking anisotropic nature of user interaction errors into account’. IEEE Virtual Reality (VR 2017), Los Angeles, CA, USA, March 2017, pp. 219220.
    38. 38)
      • 16. ‘Microsoft hololens’, Available at https://www.microsoft.com/en-us/hololens, accessed: 6 June 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2018.5065
Loading

Related content

content/journals/10.1049/htl.2018.5065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address