ARssist: augmented reality on a head-mounted display for the first assistant in robotic surgery
- Author(s): Long Qian 1 ; Anton Deguet 1 ; Peter Kazanzides 1
-
-
View affiliations
-
Affiliations:
1:
Johns Hopkins University , Baltimore , Maryland , USA
-
Affiliations:
1:
Johns Hopkins University , Baltimore , Maryland , USA
- Source:
Volume 5, Issue 5,
October
2018,
p.
194 – 200
DOI: 10.1049/htl.2018.5065 , Online ISSN 2053-3713
In robot-assisted laparoscopic surgery, the first assistant (FA) is responsible for tasks such as robot docking, passing necessary materials, manipulating hand-held instruments, and helping with trocar planning and placement. The performance of the FA is critical for the outcome of the surgery. The authors introduce ARssist, an augmented reality application based on an optical see-through head-mounted display, to help the FA perform these tasks. ARssist offers (i) real-time three-dimensional rendering of the robotic instruments, hand-held instruments, and endoscope based on a hybrid tracking scheme and (ii) real-time stereo endoscopy that is configurable to suit the FA's hand–eye coordination when operating based on endoscopy feedback. ARssist has the potential to help the FA perform his/her task more efficiently, and hence improve the outcome of robot-assisted laparoscopic surgeries.
Inspec keywords: endoscopes; surgery; helmet mounted displays; augmented reality; rendering (computer graphics); medical robotics; stereo image processing
Other keywords: robotic instruments; endoscopy feedback; hand-held instruments; real-time three-dimensional rendering; FA's hand-eye coordination; real-time stereo endoscopy; augmented reality application; ARssist; first assistant; trocar planning; robot docking; hybrid tracking scheme; robot-assisted laparoscopic surgery; optical see-through head-mounted display
Subjects: Virtual reality; Computer vision and image processing techniques; Biology and medical computing; Optical and laser radiation (biomedical imaging/measurement); Patient care and treatment; Graphics techniques; Robotics; Biological and medical control systems; Optical and laser radiation (medical uses); Display equipment and systems; Patient care and treatment; Patient diagnostic methods and instrumentation
References
-
-
1)
-
2. Martin, S.: ‘The role of the first assistant in robotic assisted surgery’, Br. J. Perioper. Nurs., 2004, 14, (4), pp. 159–163.
-
-
2)
-
19. Wang, J., Qian, L., Azimi, E., et al: ‘Prioritization and static error compensation for multi-camera collaborative tracking in augmented reality’. IEEE Virtual Reality (VR), Los Angeles, CA, USA, March 2017, pp. 335–336.
-
-
3)
-
7. Qian, L., Barthel, A., Johnson, A., et al: ‘Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display’, Int. J. Comput. Assisted Radiol. Surg., 2017, 12, (6), pp. 901–910 (doi: 10.1007/s11548-017-1564-y).
-
-
4)
-
4. Nayyar, R., Yadav, S., Singh, P., et al: ‘Impact of assistant surgeon on outcomes in robotic surgery’, Indian J. Urol., 2016, 32, (3), p. 204 (doi: 10.4103/0970-1591.185095).
-
-
5)
-
20. Kwartowitz, D.M., Herrell, S.D., Galloway, R.L.: ‘Toward image-guided robotic surgery: determining intrinsic accuracy of the da Vinci robot’, Int. J. Comput. Assist. Radiol. Surg., 2006, 1, (3), pp. 157–165 (doi: 10.1007/s11548-006-0047-3).
-
-
6)
-
15. Buchs, N.C., Volonte, F., Pugin, F., et al: ‘Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery’, J. Surg. Res., 2013, 184, (2), pp. 825–831 (doi: 10.1016/j.jss.2013.04.032).
-
-
7)
-
21. Abawi, D.F., Bienwald, J., Dorner, R.: ‘Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit’. Proc. of the 3rd IEEE/ACM Int. Symp. on Mixed and Augmented Reality, Arlington, VA, USA, November 2004, pp. 260–261.
-
-
8)
-
24. Owen, C.B., Zhou, J., Tang, A., et al: ‘Display-relative calibration for optical see-through head-mounted displays’. IEEE/ACM Intl. Symp. on Mixed and Augmented Reality (ISMAR), Arlington, VA, USA, November 2004, pp. 70–78.
-
-
9)
-
25. Qian, L., Azimi, E., Kazanzides, P., et al: ‘Comprehensive tracker based display calibration for holographic optical see-through head-mounted display’, 2017, arXiv:1703.05834.
-
-
10)
-
17. ‘Meta’, Available at http://www.metavision.com/, accessed: 6 June 2018.
-
-
11)
-
1. Kumar, R., Hemal, A.K.: ‘The ‘scrubbed surgeon’ in robotic surgery’, World J. Urol., 2006, 24, (2), pp. 144–147 (doi: 10.1007/s00345-006-0068-0).
-
-
12)
-
32. ‘Hololensartoolkit’. Available at https://github.com/qian256/HoloLensARToolKit, accessed: 6 June 2018.
-
-
13)
-
33. ‘Locatable camera’. Available at https://docs.microsoft.com/en-us/windows/mixed-reality/locatable-camera, accessed: 6 June 2018.
-
-
14)
-
31. Kato, H., Billinghurst, M.: ‘Marker tracking and HMD calibration for a video-based augmented reality conferencing system’. IEEE/ACM Intl. Workshop on Augmented Reality (IWAR), San Francisco, CA, USA, October 1999, pp. 85–94.
-
-
15)
-
3. Sgarbura, O., Vasilescu, C.: ‘The decisive role of the patient-side surgeon in robotic surgery’, Surg. Endosc., 2010, 24, (12), pp. 3149–3155 (doi: 10.1007/s00464-010-1108-9).
-
-
16)
-
34. Fontanelli, G., Ficuciello, F., Villani, L., et al: ‘Da Vinci research kit: PSM and MTM dynamic modelling’. IROS Workshop on Shared Platforms for Medical Robotics Research, Vancouver, Canada, 2017.
-
-
17)
-
38. Itoh, Y., Hamasaki, T., Sugimoto, M.: ‘Occlusion leak compensation for optical see-through displays using a single-layer transmissive spatial light modulator’, IEEE Trans. Visual. Comput. Graphics, 2017, 23, (11), pp. 2463–2473 (doi: 10.1109/TVCG.2017.2734427).
-
-
18)
-
18. Bernhardt, S., Nicolau, S.A., Soler, L., et al: ‘The status of augmented reality in laparoscopic surgery as of 2016’, Med. Image Anal., 2017, 37, pp. 66–90 (doi: 10.1016/j.media.2017.01.007).
-
-
19)
-
11. Lo, B., Chung, A.J., Stoyanov, D., et al: ‘Real-time intraoperative 3D tissue deformation recovery’. IEEE Intl. Symp. on Biomedical Imaging: From Nano to Macro (ISBI), Paris, France, May 2008, pp. 1387–1390.
-
-
20)
-
30. Quigley, M., Conley, K., Gerkey, B., et al: ‘ROS: an open-source robot operating system’. ICRA Workshop on Open Source Software, Kobe, Japan, 2009.
-
-
21)
-
18. Thrun, S., Leonard, J.J.: ‘Simultaneous localization and mapping’, in Siciliano, B., Khatib, O. (Eds.): ‘Springer handbook of robotics’ (Springer, Berlin & Heidelberg, 2008), pp. 871–889.
-
-
22)
-
8. Chen, L., Day, T.W., Tang, W., et al: ‘Recent developments and future challenges in medical mixed reality’. IEEE Intl. Symp. on Mixed and Augmented Reality (ISMAR), Nantes, France, October 2017, pp. 123–135.
-
-
23)
-
28. Kazanzides, P., Chen, Z., Deguet, A., et al: ‘An open-source research kit for the da Vinci R surgical system’. IEEE Intl. Conf. on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014, pp. 6434–6439.
-
-
24)
-
14. Koppel, D., Wang, Y.-F., Lee, H.: ‘Image-based rendering and modeling in videoendoscopy’. IEEE Intl. Symp. on Biomedical Imaging: Nano to Macro, Arlington, VA, USA, April 2004, pp. 269–272.
-
-
25)
-
6. Rolland, J.P., Fuchs, H.: ‘Optical versus video see-through head-mounted displays in medical visualization’, Presence, Teleoperators Virtual Environ., 2000, 9, (3), pp. 287–309 (doi: 10.1162/105474600566808).
-
-
26)
-
12. Maier-Hein, L., Mountney, P., Bartoli, A., et al: ‘Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery’, Med. Image Anal., 2013, 17, (8), pp. 974–996 (doi: 10.1016/j.media.2013.04.003).
-
-
27)
-
26. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, New York, NY, USA, 2003).
-
-
28)
-
36. Edgcumbe, P., Pratt, P., Yang, G.-Z., et al: ‘Pico Lantern: surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector’, Med. Image Anal., 2015, 25, (1), pp. 95–102 (doi: 10.1016/j.media.2015.04.008).
-
-
29)
-
37. Vagvolgyi, B., Niu, W., Chen, Z., et al: ‘Augmented virtuality for model-based teleoperation’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017, pp. 3826–3833.
-
-
30)
-
13. Koreeda, Y., Obata, S., Nishio, Y., et al: ‘Development and testing of an endoscopic pseudo-viewpoint alternating system’, Int. J. Comput. Assisted Radiol. Surg., 2015, 10, (5), pp. 619–628 (doi: 10.1007/s11548-014-1083-z).
-
-
31)
-
23. Itoh, Y., Klinker, G.: ‘Interaction-free calibration for optical see-through head-mounted displays based on 3d eye localization’. IEEE Symp. on 3D User Interfaces (3DUI), Minneapolis, MN, USA, March 2014, pp. 75–82.
-
-
32)
-
22. Tuceryan, M., Genc, Y., Navab, N.: ‘Single-point active alignment method (SPAAM) for optical see-through HMD calibration for augmented reality’, Presence, Teleoperators Virtual Environ., 2002, 11, (3), pp. 259–276 (doi: 10.1162/105474602317473213).
-
-
33)
-
29. DiMaio, S., Hasser, C.: ‘The da Vinci research interface’. MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions, Midas Journal, 2008, Available at http://hdl.handle.net/10380/1464.
-
-
34)
-
5. Sung, G.T., Gill, I.S.: ‘Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems’, Urology, 2001, 58, (6), pp. 893–898 (doi: 10.1016/S0090-4295(01)01423-6).
-
-
35)
-
27. Qian, L., Unberath, M., Yu, K., et al: ‘Towards virtual monitors for image guided interventions-real-time streaming to optical see-through head-mounted displays’, 2017, arXiv:1710.00808.
-
-
36)
-
10. Wentink, B.: ‘Eye-hand coordination in laparoscopy – an overview of experiments and supporting aids’, Minim Invasive Ther. Allied Technol., 2001, 10, (3), pp. 155–162 (doi: 10.1080/136457001753192277).
-
-
37)
-
35. Azimi, E., Qian, L., Kazanzides, P., et al: ‘Robust optical see-through head-mounted display calibration: taking anisotropic nature of user interaction errors into account’. IEEE Virtual Reality (VR 2017), Los Angeles, CA, USA, March 2017, pp. 219–220.
-
-
38)
-
16. ‘Microsoft hololens’, Available at https://www.microsoft.com/en-us/hololens, accessed: 6 June 2018.
-
-
1)

Related content
