http://iet.metastore.ingenta.com
1887

access icon openaccess Improving the Otsu method for MRA image vessel extraction via resampling and ensemble learning

Loading full text...

Full text loading...

/deliver/fulltext/htl/6/4/HTL.2018.5031.html;jsessionid=14l91kc31i9e1.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2018.5031&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Liang, Z.P., Lauterbur, P.C.: ‘Principles of magnetic resonance imaging: a signal processing perspective’ (Wiley-IEEE Press, USA, 1999).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Chang, Y., Wang, H., Zheng, Y., et al: ‘Instrument variables for reducing noise in parallel MRI reconstruction’ (BioMed Research International, 2017).
    9. 9)
    10. 10)
    11. 11)
      • 11. Zhang, B., Xing, Z., He, J., et al: ‘Local optimal threshold segmentation and reconstruction of cerebrovascular MRA images’. Fifth Int. Conf. Biomedical Engineering and Informatics (BMEI), Chongqing, China, 2012.
    12. 12)
      • 12. Zenger, B., Cates, J., Morris, A., et al: ‘A practical algorithm for improving localization and quantification of left ventricular scar’, Comput. Cardiol., 2014, 2014, pp. 105108.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Alpaydin, E.: ‘Introduction to machine learning’ (MIT Press, 2010), p. 9. ISBN 978-0-262-01243-0.
    19. 19)
      • 19. Ajinkya, M.: ‘Survey of resampling techniques for improving classification performance in unbalanced datasets’, 2016, arXiv:1608.06048.
    20. 20)
      • 20. Bunk, J., Bappy, J.H., Mohammed, T.M., et al: ‘Detection and localization of image forgeries using resampling features and deep learning’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR) Workshop on Media Forensics, Honolulu, HI, USA, 2017.
    21. 21)
    22. 22)
      • 22. IXI Dataset, URL. Available at http://brain-development.org/ixi-dataset/, Accessed 23 February 2015.
    23. 23)
      • 23. Huang, D., Li, B., Li, T.: ‘Interactive visualization of the maximum intensity projection method’. IEEE Int. Conf. Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017.
    24. 24)
      • 24. Lu, L., Hager, G.D.: ‘Dynamic foreground/background extraction from images and videos using random patches’. Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 2006.
    25. 25)
      • 25. Taghizadeh, M., Hajipoor, M.: ‘A hybrid algorithm for segmentation of MRI images based on edge detection’. Int. Conf. Soft Computing and Pattern Recognition (SoCPaR), Dalian, China, 2011.
    26. 26)
      • 26. Li, H., Zou, P., Wang, X., et al: ‘A new combination sampling method for imbalanced data’. Proc. Chinese Intelligent Automation Conf., Yangzhou, China, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2018.5031
Loading

Related content

content/journals/10.1049/htl.2018.5031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address