Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Estimation of respiratory rate from motion contaminated photoplethysmography signals incorporating accelerometry

Loading full text...

Full text loading...

/deliver/fulltext/htl/6/1/HTL.2018.5019.html;jsessionid=12892hrl7y7g6.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2018.5019&mimeType=html&fmt=ahah

References

    1. 1)
      • 29. Orphanidou, C., Brain, O., Feldmar, J., et al: ‘Spectral fusion for estimating respiratory rate from the ECG’. Conf. Proc. ITAB, 2006, pp. 14.
    2. 2)
    3. 3)
    4. 4)
      • 2. Cretikos, M.A., Bellomo, R., Hillman, K., et al: ‘Respiratory rate: the neglected vital sign’, Med. J. Aust., 2008, 188, pp. 657659.
    5. 5)
    6. 6)
    7. 7)
      • 15. Fleming, S.G., Tarassenko, L.: ‘A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram’, Int. J. Biol. Med. Sci., 2007, 2, (4), pp. 232236.
    8. 8)
      • 14. Garde, A., Ansermino, W.K.J.M., Dumont, G.A.: ‘Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram’, J. Clin. Monit. Comput., 2014, 9, (1), p. e86.
    9. 9)
      • 26. Jarchi, D., Casson, A.J.: ‘Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise’. 38th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, (EMBC), 2016, pp. 31553158.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 28. Lazaro, J.: ‘Non-invasive techniques for respiratory information extraction based on pulse photoplethysmogram and electrocardiogram’. PhD. thesis, University of Zaragoza, 2015.
    22. 22)
    23. 23)
      • 3. Ebell, M.H.: ‘Predicting pneumonia in adults with respiratory illness’, Am Fam Physician., 2007, 76, pp. 560562.
    24. 24)
    25. 25)
      • 33. Rasmussen, C.E., Williams, C.K.I.: ‘Gaussian processes for machine learning’ (MIT Press, USA, 2006).
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2018.5019
Loading

Related content

content/journals/10.1049/htl.2018.5019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address