Quantifying attention shifts in augmented reality image-guided neurosurgery
- Author(s): Étienne Léger 1 ; Simon Drouin 2 ; D. Louis Collins 2 ; Tiberiu Popa 1 ; Marta Kersten-Oertel 1
-
-
View affiliations
-
Affiliations:
1:
Department of Computer Science and Software Engineering & Perform Centre , Concordia University , Montreal , Canada ;
2: McConnell Brain Imaging Centre, Montreal Neuro , McGill University , Montréal , Canada
-
Affiliations:
1:
Department of Computer Science and Software Engineering & Perform Centre , Concordia University , Montreal , Canada ;
- Source:
Volume 4, Issue 5,
October
2017,
p.
188 – 192
DOI: 10.1049/htl.2017.0062 , Online ISSN 2053-3713
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Received
24/07/2017,
Accepted
27/07/2017,
Published
18/09/2017

Full text loading...
/deliver/fulltext/htl/4/5/HTL.2017.0062.html;jsessionid=b0t2mkcsm1v2.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2017.0062&mimeType=html&fmt=ahah
Inspec keywords: neurophysiology; surgery; tumours; medical image processing; augmented reality
Other keywords: desktop augmented reality; augmented reality image-guided neurosurgery; mobile augmented reality; tumour; craniotomy planning
Subjects: Biophysics of neurophysiological processes; Virtual reality; Optical, image and video signal processing; Patient diagnostic methods and instrumentation; Biology and medical computing; Medical and biomedical uses of fields, radiations, and radioactivity; health physics; Patient care and treatment; Biomedical measurement and imaging; Patient care and treatment; Computer vision and image processing techniques
References
-
-
1)
-
1. Kersten-Oertel, M., Jannin, P., Collins, D.L.: ‘The state of the art of visualization in mixed reality image guided surgery’, Comput. Med. Imaging Graph., 2013, 37, (2), pp. 98–112 (doi: 10.1016/j.compmedimag.2013.01.009).
-
-
2)
-
2. Kikinis, R., Gleason, P.L., Lorensen, W.E., et al: ‘Image guidance techniques for neurosurgery’. Visualization in Biomedical Computing 1994 Int. Society for Optics and Photonics, 1994, pp. 537–540.
-
-
3)
-
3. Edwards, P.J., King, A.P., Maurer, C.R., et al: ‘Design and evaluation of a system for microscope-assisted guided interventions (magi)’, IEEE Trans. Med. Imaging, 2000, 19, (11), pp. 1082–1093 (doi: 10.1109/42.896784).
-
-
4)
-
4. Cabrilo, I., Bijlenga, P., Schaller, K.: ‘Augmented reality in the surgery of cerebral aneurysms: a technical report’, Oper. Neurosurg., 2011, 10, (2), pp. 252–261.
-
-
5)
-
5. Cabrilo, I., Bijlenga, P., Schaller, K.: ‘Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations’, Acta Neurochir., 2014, 156, (9), pp. 1769–1774 (doi: 10.1007/s00701-014-2183-9).
-
-
6)
-
6. Kersten-Oertel, M., Gerard, I.J., Drouin, S., et al: ‘Augmented reality for specific neurovascular surgical tasks’. Workshop on Augmented Environments for Computer-Assisted Interventions, 2015, pp. 92–103.
-
-
7)
-
7. Kersten-Oertel, M., Gerard, I.J., Drouin, S., et al: ‘Towards augmented reality guided craniotomy planning in tumour resections’. Int. Conf. Medical Imaging and Virtual Reality, 2016, pp. 163–174.
-
-
8)
-
8. Mobasheri, M.H., Johnston, M., Syed, U.M., et al: ‘The uses of smartphones and tablet devices in surgery: a systematic review of the literature’, Surgery, 2015, 158, (5), pp. 1352–1371 (doi: 10.1016/j.surg.2015.03.029).
-
-
9)
-
7. Deng, W., et al: ‘Easy-to-use augmented reality neuronavigation using a wireless tablet PC’, Stereotact Funct Neurosurg, 2014, 92, (1), pp. 17–24 (doi: 10.1159/000354816).
-
-
10)
-
10. Watanabe, E., Satoh, M., Konno, T., et al: ‘The trans-visible navigator: a see-through neuronavigation system using augmented reality’, World Neurosurg., 2016, 87, pp. 399–405 (doi: 10.1016/j.wneu.2015.11.084).
-
-
11)
-
11. Bieck, R., Franke, S., Neumuth, T., et al: ‘Computer-assisted neurosurgery: an interaction concept for a tablet-based surgical assistance system’. Conf.: 14th Annual Conf. the German Society of Computer and Robotic Assisted Surgery, Bremen, Germany, 2015.
-
-
12)
-
12. Hou, Y., Ma, L., Zhu, R., et al: ‘A low-cost iPhone-assisted augmented reality solution for the localization of intracranial lesions’, PLoS ONE, 2016, 11, (7), pp. 1–18 (doi: 10.1371/journal.pone.0159185).
-
-
13)
-
13. Müller, M., Rassweiler, M.-C., Klein, J., et al: ‘Mobile augmented reality for computer-assisted percutaneous nephrolithotomy’, Int. J. Comput. Assist. Radiol. Surg., 2013, 8, (4), pp. 663–675 (doi: 10.1007/s11548-013-0828-4).
-
-
14)
-
14. Guha, D., Alotaibi, N.M., Nguyen, N., et al: ‘Augmentedreality in neurosurgery: a review of current concepts and emerging applications’, Can. J. Neurol. Sci., 2017, 44, (33), pp. 235–245 (doi: 10.1017/cjn.2016.443).
-
-
15)
-
15. Tagaytayan, R., Kelemen, A., Sik-Lanyi, C.: ‘Augmented reality in neurosurgery’, Arch. Med. Sci., 2016, 12, (1), pp 1–11.
-
-
16)
-
16. Meola, A., Cutolo, F., Carbone, M., et al: ‘Augmented reality in neurosurgery: a systematic review’, 2016.
-
-
17)
-
17. Wachs, J.P.: ‘Gaze, posture and gesture recognition to minimize focus shifts for intelligent operating rooms in a collaborative support system’, Int. J. Comput. Commun. Control, 2010, 5, (1), pp. 106–124 (doi: 10.15837/ijccc.2010.1.2467).
-
-
18)
-
18. Graydon, J., Eysenck, M.W.: ‘Distraction and cognitive performance’, Eur. J. Cogn. Psychol., 1989, 1, (2), pp. 161–179 (doi: 10.1080/09541448908403078).
-
-
19)
-
19. Weerdesteyn, V., Schillings, A.M., Van Galen, G.P., et al: ‘Distraction affects the performance of obstacle avoidance during walking’, J. Mot. Behav., 2003, 35, (1), pp. 53–63 (doi: 10.1080/00222890309602121).
-
-
20)
-
20. Goodell, K.H., Cao, C.G.L., Schwaitzberg, S.D.: ‘Effects of cognitive distraction on performance of laparoscopic surgical tasks’, J. Laparoendosc. Adv. Surg. Tech., 2006, 16, (2), pp. 94–98 (doi: 10.1089/lap.2006.16.94).
-
-
21)
-
21. Tabrizi, L.B., Mahvash, M.: ‘Augmented reality–guided neurosurgery: accuracy and intraoperative application of an image projection technique’, J. Neurosurg., 2015, 123, (1), pp. 206–211 (doi: 10.3171/2014.9.JNS141001).
-
-
22)
-
8. Drouin, S., Kochanowska, A., Kersten-Oertel, M., et al: ‘IBIS: an OR ready open-source platform for image-guided neurosurgery’, Int. J. Comput. Assist. Radiol. Surg., 2017, 12, (3), pp. 363–378 (doi: 10.1007/s11548-016-1478-0).
-
-
23)
-
23. Zhang, Z.: ‘Flexible camera calibration by viewing a plane from unknown orientations’. The Proc. Seventh IEEE Int. Conf. Computer Vision, 1999, 1999, vol. 1, pp. 666–673.
-
-
24)
-
24. Tokuda, J., Fischer, G.S., Papademetris, X., et al: ‘Openigtlink: an open network protocol for image-guided therapy environment’, Int. J. Med. Robot. Comput. Assist. Surg., 2009, 5, (4), pp. 423–434 (doi: 10.1002/rcs.274).
-
-
25)
-
41. Hart, S., Staveland, J.: ‘Development of NASA-TLX (task load index): results of empirical and theoretical research’, Adv. Psychol., 1988, 52, pp. 139–183 (doi: 10.1016/S0166-4115(08)62386-9).
-
-
1)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2017.0062

Related content
content/journals/10.1049/htl.2017.0062
pub_keyword,iet_inspecKeyword,pub_concept
6
6
