http://iet.metastore.ingenta.com
1887

access icon openaccess Fuzzy logic-based risk of fall estimation using smartwatch data as a means to form an assistive feedback mechanism in everyday living activities

Loading full text...

Full text loading...

/deliver/fulltext/htl/3/4/HTL.2016.0064.html;jsessionid=25d5bwvkmcvja.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2016.0064&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Stevens, J.A., Mack, K.A., Paulozzi, L.J., et al: ‘Self-reported falls and fall-related injuries among persons aged > or =65 years’—United States, 2006. MMWR Morb. Mortal Wkly Rep., 2008, vol. 57, pp. 225229.
    4. 4)
      • 4. Sannino, G., Melillo, P., Stranges, S., et al: ‘Short term heart rate variability to predict blood pressure drops due to standing: a pilot study’, BMC Med. Inform. Decis. Mak., 2016, 5, pp. 14. doi: 10.1186/1472-6947-15-S3-S2.
    5. 5)
      • 5. Iakovakis, D., Hadjileontiadis, L.: ‘Standing hypotension prediction based on smartwatch heart rate variability data: a novel approach’. Mobile HCI 2016, Florence (Tuscany), Italy, 6–9 September, doi: 10.1145/2957265.2970370.
    6. 6)
      • 6. Goldstein, D.S.: ‘Parkinson's disease and nonmotor dysfunction’ (Springer, 2013), pp. 201212.
    7. 7)
      • 7. Rompelman, O.: ‘Rhythms and analysis techniques’, ‘The physics of heart and circulation’ (Institute of Physics Publishing, 1993), pp. 111120.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 12. Webber, C.L.Jr., Zbilut, J.P.: ‘Dynamical assessment of physio-logical systems and states using recurrence plot strategies’, J. Appl. Physiol., 1994, 76, pp. 965973.
    13. 13)
    14. 14)
      • 14. Hall, M.A.: ‘Correlation-based feature selection for machine learning’. PhD thesis, The University of Waikato, 1999.
    15. 15)
    16. 16)
      • 16. The Accident Compensation Corporation (ACC) preventing falls. http://www.acc.co.nz/preventing-injuries/athome/older-people/index.htm. 2012.
    17. 17)
      • 17. http://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/fallpxtk5.html.
    18. 18)
    19. 19)
    20. 20)
      • 20. Kasabov, N., Song, Q., Benuskova, L., et al: ‘Integrating local and personalised modelling with global ontology knowledge bases for biomedical and bioinformatics decision support’, Computational Intelligence in Biomedicine and Bioinformatics, 2008, pp. 15.
    21. 21)
      • 21. Melillo, P., Castaldo, R., Sannino, G., et al: ‘Wearable technology and ECG processing for fall risk assessment, prevention and detection’. Conf. Proc. IEEE Engineering in Medicine and Biology Society, 2015, pp. 77407743.
    22. 22)
      • 22. Fiasché, M., Cuzzola, M., Irrera, G., et al: ‘Advances in medical decision support systems for diagnosis of acute graft-versus-host disease: ‘Molecular and computational intelligence joint approaches’, Front. Biol. China, 2011, 6, (4), pp. 263273.
    23. 23)
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2016.0064
Loading

Related content

content/journals/10.1049/htl.2016.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address