http://iet.metastore.ingenta.com
1887

access icon free Automatic classifier based on heart rate variability to identify fallers among hypertensive subjects

  • PDF
    198.619140625Kb
  • HTML
    66.2890625Kb
  • XML
    84.2509765625Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/2/4/HTL.2015.0012.html;jsessionid=lq57ae87tq0a.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2015.0012&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 11. Rubenstein, L.Z.: ‘Falls in older people: epidemiology, risk factors and strategies for prevention’, Age Ageing, 2006, 35, (Suppl 2), pp. ii37ii41.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 22. Jović, A., Brkić, K., Bogunović, N.: ‘Decision tree ensembles in biomedical time-series classification’, LNCS (Lecture Notes in Computer Science) (Springer, 2012).
    23. 23)
      • 23. Kuncheva, L.I., Rodríguez, J.J.: ‘An experimental study on rotation forest ensembles’, in Haindl, M., Kittler, J., Roli, F. (Eds): ‘Multiple classifier systems’ (Springer, 2007).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 34. Zong, W., Moody, G., Jiang, D.: ‘A robust open-source algorithm to detect onset and duration of Qrs complexes’, in Murray,, A. (Ed.): ‘Computers in cardiology’ (IEEE, 2003).
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 40. Richman, J.S., Moorman, J.R.: ‘Physiological time-series analysis using approximate entropy and sample entropy'‘, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, (6), pp. H2039H2049.
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 46. Webber, C.L., Zbilut, J.P.: ‘Dynamical assessment of physiological systems and states using recurrence plot strategies’, J. Appl. Physiol., 1994, 76, (2), pp. 965973.
    47. 47)
    48. 48)
      • 48. Melillo, P., Pecchia, L., Ursino, M.: ‘Nonlinear analysis research in biomedical engineering’, in Padovani, G., Occhino, M. (Eds.): ‘Focus on nonlinear analysis research’ (Nova Science Publishers, 2013).
    49. 49)
      • 49. Breiman, L.: ‘Classification and regression trees’ (Chapman & Hall, 1993).
    50. 50)
      • 50. Quinlan, J.R.: ‘C4.5: programs for machine learning’ (Morgan Kaufmann Publishers, 1993).
    51. 51)
      • 51. Jha, S.S., Das, P.K., Nair, S.B.: ‘Automatic facial expression recognition using extended Ar-Lbp’, in Venugopal, K.R., Patnaik, L.M. (Eds.): ‘Wireless networks and computational intelligence’ (Springer, 2012).
    52. 52)
      • 52. Ramshur, J.: ‘Design, evaluation and application of heart rate variability software’, The University of Memphis, Memphis, (2010)..
    53. 53)
    54. 54)
      • 54. Melillo, P., Scala, P., Crispino, F., Pecchia, L.: ‘Cloud-based remote processing and data-mining platform for automatic risk assessment in hypertensive patients’, in Pecchia, L., Chen, L., Nugent, C., Bravo, J. (Eds.): ‘Ambient assisted living and daily activities’ (Springer, 2014).
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2015.0012
Loading

Related content

content/journals/10.1049/htl.2015.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address