http://iet.metastore.ingenta.com
1887

access icon openaccess Method to classify elderly subjects as fallers and non-fallers based on gait energy image

  • XML
    52.9345703125Kb
  • PDF
    526.560546875Kb
  • HTML
    58.9375Kb
Loading full text...

Full text loading...

/deliver/fulltext/htl/1/3/HTL.2014.0065.html;jsessionid=1eymr0nuvii97.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fhtl.2014.0065&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Lord, S., Sherringtone, C., Menz, H.B.: ‘Falls in older people: risk factor and strategies for prevention’ (Cambridge University Press, Cambridge, UK, 2001).
    2. 2)
    3. 3)
    4. 4)
      • 4. Stone, E., Skubic, M.: ‘Fall detection in homes of older adults using the Microsoft Kinect’, IEEE J. Biomed. Health Inf., 2014, (99), doi: 10.1109/JBHI.2014.2312180.
    5. 5)
    6. 6)
      • 6. Millor, N., Lecumberri, P., Gomez, M., Martinez-Ramirez, A., Izquierdo, M.: ‘Kinematic parameters to evaluate functional performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: a systematic review’, IEEE Trans. Neural Syst. Rehabil. Eng., 2014, (22), doi: 10.1109/TNSRE.2014.2331895.
    7. 7)
      • 7. Shumway-Cook, A., Brauer, S., Woollacott, M.: ‘Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test’, Phys. Ther., 2000, 80, (9), pp. 896903.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
http://iet.metastore.ingenta.com/content/journals/10.1049/htl.2014.0065
Loading

Related content

content/journals/10.1049/htl.2014.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address