Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Gene modification strategies using AO-mediated exon skipping and CRISPR/Cas9 as potential therapies for Duchenne muscular dystrophy patients

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease affecting 1 in 5000 young males worldwide annually. Patients experience muscle weakness and loss of ambulation at an early age, with ∼75% reduced life expectancy. Recently developed genetic editing strategies aim to convert severe DMD phenotypes to a milder disease course. Among these, the antisense oligonucleotide (AO)-mediated exon skipping and the adeno-associated viral-delivered clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (adeno-associated viral (AAV)-delivered CRISPR/Cas9) gene editing have shown promising results in restoring dystrophin protein expression and functionality in skeletal and heart muscle in both animals and human cells in vivo and in vitro. However, therapeutic benefits currently remain unclear. The aim of this review is to compare the potential therapeutic benefits, efficacy, safety, and clinical progress of AO-mediated exon skipping and CRISPR/Cas9 gene-editing strategies. Both techniques have demonstrated therapeutic benefit and long-term efficacy in clinical trials. AAV-delivery of CRISPR/Cas9 may potentially correct disease-causing mutations following a single treatment compared to the required continuous AO/PMO-delivery of exon skipping drugs. The latter has the potential to increase the dystrophin expression in skeletal/heart muscle with sustained effects. However, therapeutic challenges including the need for optimised delivery must be overcome in to advance current clinical data.

References

    1. 1)
      • 14. Kole, R., Krieg, A.M.: ‘Exon skipping therapy for Duchenne muscular dystrophy’, Adv. Drug Deliv. Rev., 2015, 87, pp. 104107.
    2. 2)
      • 58. Knott, G.J., Doudna, J.A.: ‘CRISPR-Cas guides the future of genetic engineering’, Science, 2018, 361, (6405), pp. 866869.
    3. 3)
      • 17. Lim, K.R.Q., Maruyama, R., Yokota, T.: ‘Eteplirsen in the treatment of Duchenne muscular dystrophy.’, Drug Des. Devel Ther., 2017, 11, pp. 533545.
    4. 4)
      • 31. Min, Y.-L., Bassel-Duby, R., Olson, E.N.: ‘CRISPR correction of Duchenne muscular dystrophy’, Ann. Rev. Med., 2019, 70, (1), pp. 239255.
    5. 5)
      • 3. Min, Y.-L., Li, H., Rodriguez-Caycedo, C., et al: ‘CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells’, Sci. Adv., 2019, 5, p. 4324.
    6. 6)
      • 41. Amoasii, L., Hildyard, J.C.W., Li, H., et al: ‘Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy’, Science, 2018, 362, (6410), pp. 8691.
    7. 7)
      • 33. Aoki, Y., Yokota, T., Nagata, T., et al: ‘Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery’, Proc. Natl. Acad. Sci., 2012, 109, (34), pp. 1376313768.
    8. 8)
      • 40. López, S.M., Balog-Alvarez, C., Vitha, S., et al: ‘Correction: challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy’, PLoS ONE, 2020, 15, (10), p. e0241430o, pp. 1–3.
    9. 9)
      • 7. Gao, Q.Q., McNally, E.M.: ‘The Dystrophin Complex: structure, function, and implications for therapy’, in ‘Comprehansive physiology’ (John Wiley & Sons Inc, Hoboken N.J, 2015, 1stEdn.) pp. 12231239.
    10. 10)
      • 27. Hsu, P.D., Lander, E.S., Zhang, F.: ‘Development and applications of CRISPR-Cas9 for genome engineering’, Cell, 2014, 157, (6), pp. 12621278.
    11. 11)
      • 63. Lino, C.A, Harper, J.P., Carney, J.A., et al: ‘Delivering crispr: a review of the challenges and approaches’, Drug Delivery, 2018, 25, (1), pp. 12341257.
    12. 12)
      • 34. Bengtsson, N.E., Hall, J.K., Odom, G.L., et al: ‘Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy’, Nat. Commun., 2017, 8, (1), p. 14454.
    13. 13)
      • 51. Niu, Y., Shen, B., Cui, Y., et al: ‘Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos’, Cell, 2014, 156, (4), pp. 836843.
    14. 14)
      • 8. Echigoya, Y., Lim, K.R.Q., Nakamura, A., et al: ‘Multiple exon skipping in the Duchenne muscular dystrophy hot spots: prospects and challenges’, J. Pers. Med., 2018, 8, (4), p. 41.
    15. 15)
      • 29. Yokota, T., Lu, Q., Partridge, T., et al: ‘Efficacy of systemic morpholino exon-skipping in duchenne dystrophy dogs’, Ann. Neurol., 2009, 65, (6), pp. 667676.
    16. 16)
      • 25. Lim, K.R.Q., Echigoya, Y., Nagata, T., et al: ‘Efficacy of multi-exon skipping treatment in Duchenne muscular dystrophy dog model neonates’, Mol. Ther., 2019, 27, (1), pp. 7686.
    17. 17)
      • 43. Charlesworth, C.T., Deshpande, P.S., Dever, D.P., et al: ‘Identification of preexisting adaptive immunity to Cas9 proteins in humans’, Nat. Med., 2019, 25, (2), pp. 249254.
    18. 18)
      • 18. Sarepta Therapeutics Inc.: ‘Study of eteplirsen in DMD patients - full text view - ClinicalTrials.gov’, 2019, https://clinicaltrials.gov/ct2/show/NCT02255552, (Accessed 24 September 2019).
    19. 19)
      • 52. Sharma, P., Allison, J.P.: ‘Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential’, Cell, 2015, 161, (2), pp. 205214.
    20. 20)
      • 1. Mendell, J.R., Shilling, C., Leslie, N.D., et al: ‘Evidence-based path to newborn screening for Duchenne muscular dystrophy’, Ann. Neurol., 2012, 71, (3), pp. 304313.
    21. 21)
      • 26. Mout, R., Ray, M., Lee, Y.-W., et al: ‘In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges’, Bioconjugate Chem., 2017, 28, (4), pp. 880884.
    22. 22)
      • 53. Rosenberg, S.A., Restifo, N.P.: ‘Adoptive cell transfer as personalized immunotherapy for human cancer’, Science, 2015, 348, (6230), pp. 6268.
    23. 23)
      • 56. Garon, E.B., Rizvi, N.A., Hui, R., et al: ‘Pembrolizumab for the treatment of non–small-cell lung cancer’, N. Engl. J. Med., 2015, 372, (21), pp. 20182028.
    24. 24)
      • 37. Zhu, P, Wu, F, Mosenson, J, et al: ‘CRISPR/cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy’. Mol. Ther. Nucleic Acids., 2017, 7, pp. 3141.
    25. 25)
      • 64. Hanlon, K.S., Kleinstiver, B.P., Garcia, S.P., et al: ‘High levels of AAV vector integration into CRISPR-induced DNA breaks’, Nat. Commun., 2019, 10, pp. 111.
    26. 26)
      • 12. Nelson, C.E., Hakim, C.H., Ousterout, D.G., et al: ‘In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy’, Science, 2016, 351, (6271), pp. 403407.
    27. 27)
      • 55. Brahmer, J., Reckamp, K.L., Baas, P., et al: ‘Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer’, N. Engl. J. Med., 2015, 373, (2), pp. 123135.
    28. 28)
      • 61. Rees, H.A., Komer, C., Yeh, W-H., et al: ‘Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery’, Nat. Commun., 2017, 8, pp. 110.
    29. 29)
      • 2. Mah, J.K., Korngut, L., Dykeman, J., et al: ‘A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy’, Neuromuscul. Disord., 2014, 24, (6), pp. 482491.
    30. 30)
      • 5. Emery, A.E.H.: ‘The muscular dystrophies’, Lancet, 2002, 359, (9307), pp. 687695.
    31. 31)
      • 42. Wang, J.-Z., Wu, P., Shi, Z.-M., et al: ‘The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD’, Brain Dev., 2017, 39, (7), pp. 547556.
    32. 32)
      • 11. Shieh, P.B.: ‘Emerging strategies in the treatment of Duchenne muscular dystrophy’, Neurotherapeutics, 2018, 15, (4), pp. 840848.
    33. 33)
      • 21. Lee, J., Echigoya, Y., Duddy, W., et al: ‘Antisense PMO cocktails effectively skip dystrophin exons 45–55 in myotubes transdifferentiated from DMD patient fibroblasts’, PLOS One, 2018, 13, (5), p. e0197084.
    34. 34)
      • 54. Borghaei, H., Paz-Ares, L., Horn, L., et al: ‘Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer’, N. Engl. J. Med., 2015, 373, (17), pp. 16271639.
    35. 35)
      • 46. Spark Therapeutics Inc: ‘FDA Approves Spark Therapeutics’ LUXTURNATM (voretigene neparvovec-rzyl), a One-time Gene Therapy for Patients with Confirmed Biallelic RPE65 Mutation-associated Retinal Dystrophy | Spark Therapeutics Inc. – IR Site’, 2017, http://ir.sparktx.com/news-releases/news-release-details/fda-approves-spark-therapeutics-luxturnatm-voretigene-neparvovec, (Accessed 25 September 2019).
    36. 36)
      • 16. Mendell, J.R., Goemans, N., Lowes, L.P., et al: & Eteplirsen Study Group and Telethon Foundation DMD Italian Network, ‘Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy’, Ann. Neurol., 2016, 79, (2), pp. 257271.
    37. 37)
      • 45. Rodrigues, G.A., Shalaev, E., Karami, T.K., et al: ‘Pharmaceutical development of AAV-based gene therapy products for the eye’, Pharm. Res., 2018, 36, (2), p. 29..
    38. 38)
      • 10. Mess ina, S., Vita, G.L.: ‘Clinical management of Duchenne muscular dystrophy: the state of the art’, Neurol. Sci., 2018, 39, (11), pp. 18371845.
    39. 39)
      • 49. Mendell, J.R., Al-Zaidy, S., Shell, R., et al: ‘Single-dose gene-replacement therapy for spinal muscular atrophy’, N. Engl. J. Med., 2017, 377, (18), pp. 110.
    40. 40)
      • 15. Sarepta Therapeutics: ‘Sarepta therapeutics | EXONDYS 51® (eteplirsen) injection’, 2019, https://www.sarepta.com/our-product, (Accessed 25 September 2019).
    41. 41)
      • 22. Nakamura, A., Fueki, N., Shiba, N., et al: ‘Deletion of exons 3–9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy’, J, Hum, Genet., 2016, 61, (7), pp. 663667.
    42. 42)
      • 57. Stadtmauer, E.: ‘NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells) - Full Text View - ClinicalTrials.gov’, 2019, https://clinicaltrials.gov/ct2/show/NCT03399448, (Accessed September 25, 2019).
    43. 43)
      • 62. Shin, J., Jiang, F., Liu, J-J., et al: ‘Disabling Cas9 by an anti-CRISPR DNA mimic’, Sci. Adv., 2017, 3, (7), p. e1701620.
    44. 44)
      • 48. Novartis, A.G.: ‘AveXis receives FDA approval for Zolgensma®, the first and only gene therapy for pediatric patients with spinal muscular atrophy (SMA) | Novartis’, 2019, https://www.novartis.com/news/media-releases/avexis-receives-fda-approval-zolgensma-first-and-only-gene-therapy-pediatric-patients-spinal-muscular-atrophy-sma, (Accessed 25 September 2019).
    45. 45)
      • 28. Yokota, T., Nakamura, A., Nagata, T., et al: ‘Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs’, Nucleic Acid Ther., 2012, 22, (5), pp. 110.
    46. 46)
      • 24. Nakamura, A., Yoshida, K., Fukushima, K., et al: ‘Follow-up of three patients with a large in-frame deletion of exons 45–55 in the Duchenne muscular dystrophy (DMD) gene’, J. Clin. Neurosci., 2008, 15, (7), pp. 757763.
    47. 47)
      • 19. Echigoya, Y., Nakamura, A., Nagata, T., et al: ‘Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy’, Proc. Natl. Acad. Sci.., 2017, 114, (16), pp. 42134218.
    48. 48)
      • 32. Long, C., Amoasii, L., Mireault, A.A., et al: ‘Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy’, Science, 2016, 351, (6271), pp. 400403.
    49. 49)
      • 4. NHS UK: ‘Muscular dystrophy: overview’, 2018, https://www.nhs.uk/conditions/muscular-dystrophy/, (Accessed 25 September 2019).
    50. 50)
      • 9. Long, C., Li, H., Tiburcy, M., et al: ‘Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing’, Sci. Adv., 2018, 4, (1), p. eaap9004.
    51. 51)
      • 30. Echigoya, Y., Aoki, Y., Miskew, B., et al: ‘Long-term efficacy of systemic multiexon skipping targeting Dystrophin Exons 45–55 with a cocktail of vivo-morpholinos in Mdx52 mice’, Mol. Ther - Nucleic Acids, 2015, 4, p. e225.
    52. 52)
      • 6. Aslesh, T., Maruyama, R., Yokota, T.: ‘Currecurre’, Biomedicines, 2018, 6, (1), p. 1.
    53. 53)
      • 20. Young, C.S., Mokhonova, E., Quinonez, M., et al: ‘Creation of a novel humanized dystrophic mouse model of Duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy’, J. Neuromuscul. Dis., 2017, 4, (2), pp. 139145.
    54. 54)
      • 38. Nelson, C.E., Wu, Y., Gemberling, M.P., et al: ‘Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy’, Nat. Med., 2019, 25, (3), pp. 427432.
    55. 55)
      • 59. Guillemot, F., Souquetab, S., Catros, S., et al: ‘High-throughput laser printing of cells and biomaterials for tissue engineering’, Acta Biomater., 2010, 6, (7), pp. 24942500.
    56. 56)
      • 35. Lee, K., Conboy, M., Park, H.M., et al: ‘Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair’, Nat. Biomed. Eng, 2017, 1, pp. 889901.
    57. 57)
      • 23. Béroud, C., Tuffery-Giraud, S., Matsuo, M., et al: ‘Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy’, Hum. Mutat., 2007, 28, (2), pp. 196202.
    58. 58)
      • 39. Hildyard, J., Rawson, F., Harron, R., et al: ‘Characterising the skeletal muscle histological phenotype of the DeltaE50-MD dog, a preclinical model of Duchenne muscular dystrophy’, Neuromuscul. Disord., 2018, 28, p. S18.
    59. 59)
      • 60. Naeem, M., Majeed, D., Hoque, M. Z., et al: ‘Latest developed strategies to minimize the off-target effects in CRISPR-cas-mediated genome editing’, Cells, 2020, 9, (7), pp. 16081630.
    60. 60)
      • 47. US Food & Drug Administration (FDA): ‘FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality | FDA’, 2019, https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease, (Accessed 25 September 2019).
    61. 61)
      • 13. Bengtsson, N.E., Seto, J.T., Hall, J.K., et al: ‘Progress and prospects of gene therapy clinical trials for the muscular dystrophies’, Hum. Mol. Genet., 2016, 25, (R1), pp. 917.
    62. 62)
      • 36. Zhu, P., Zhou, Y., Wu, F., et al: ‘Selective expansion of skeletal muscle stem cells from bulk muscle cells in soft three-dimensional fibrin gel’, Stem. Cells Transl. Med., 2017, 6, (5), pp. 14121423.
    63. 63)
      • 50. Lu, Y.: ‘PD-1 Knockout Engineered T Cells for Metastatic Non-small Cell Lung Cancer’, 2019, https://clinicaltrials.gov/ct2/show/NCT02793856, (Accessed 25 September 2019).
    64. 64)
      • 44. Smalley, E.: ‘First AAV gene therapy poised for landmark approval’, Nat. Biotechnol., 2017, 35, (11), pp. 998999.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2020.0017
Loading

Related content

content/journals/10.1049/enb.2020.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address