Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Dynamical model fitting to a synthetic positive feedback circuit in E. coli

Loading full text...

Full text loading...

/deliver/fulltext/enb/4/2/ENB.2020.0009.html;jsessionid=2rwb427stjarf.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fenb.2020.0009&mimeType=html&fmt=ahah

References

    1. 1)
      • 23. Kamionka, A., Bogdanska-Urbaniak, J., Scholz, O., et al: ‘Two mutations in the tetracycline repressor change the inducer anhydrotetracycline to a corepressor’, Nucleic Acids Res., 2004, 32, (2), pp. 842847.
    2. 2)
      • 10. Lemire, S., Yehl, K.M., Lu, T.K.: ‘Phage-based applications in synthetic biology’, Annu. Rev. Virol., 2018, 5, pp. 453476.
    3. 3)
      • 20. Jefferys, W.H., Berger, J.O.: ‘Ockham's Razor and Bayesian analysis’, American Scientist, 1992, 80, (1), pp. 6472.
    4. 4)
      • 18. Rakonjac, J., Jovanovic, G., Model, P.: ‘Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3’, Gene, 1997, 198, (1), pp. 99103.
    5. 5)
      • 14. Lloyd, L.J., Jones, S.E., Jovanovic, G., et al: ‘Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG)’, J. Biol. Chem., 2004, 279, (53), pp. 5570755714.
    6. 6)
      • 13. Jovanovic, G., Weiner, L., Model, P.: ‘Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon’, J. Bacteriol., 1996, 178, (7), pp. 19361945.
    7. 7)
      • 8. Carlson, J.C., Badran, A.H., Guggiana-Nilo, D.A., et al: ‘Negative selection and stringency modulation in phage-assisted continuous evolution’, Nat. Chem. Biol., 2014, 10, (3), pp. 216222.
    8. 8)
      • 3. Elowitz, M.B., Leibier, S.: ‘A synthetic oscillatory network of transcriptional regulators’, Nature, 2000, 403, (6767), pp. 335338.
    9. 9)
      • 5. Entus, R., Aufderheide, B., Sauro, H.M.: ‘Design and implementation of three incoherent feed-forward motif based biological concentration sensors’, Syst. Synth. Biol., 2007, 1, (3), pp. 119128.
    10. 10)
      • 30. Weiss, J.N.: ‘The Hill equation revisited: uses and misuses’, FASEB J., 1997, 11, (11), pp. 835841.
    11. 11)
      • 1. Nielsen, A.A.K., Der, B.S., Shin, J., et al: ‘Genetic circuit design automation’, Science (80-.), 2016, 352, (6281), pp. aac7341aac7341.
    12. 12)
      • 9. Brödel, A.K., Jaramillo, A., Isalan, M.: ‘Engineering orthogonal dual transcription factors for multi-input synthetic promoters’, Nat. Commun., 2016, 7, p. 13858.
    13. 13)
      • 33. Atkinson, M.R., Savageau, M.A., Myers, J.T., et al: ‘Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli’, Cell, 2003, 113, (5), pp. 597607.
    14. 14)
      • 25. Li, T., Dong, Y., Zhang, X., et al: ‘Engineering of a genetic circuit with regulatable multistability’, Integr. Biol. (United Kingdom), 2018, 10, (8), pp. 474482.
    15. 15)
      • 36. Scholes, N.S., Isalan, M.: ‘A three-step framework for programming pattern formation’, Curr. Opin. Chem. Biol., 2017, 40, pp. 17.
    16. 16)
      • 37. Der, B.S., Glassey, E., Bartley, B.A., et al: ‘DNAplotlib: programmable visualization of genetic designs and associated data’, ACS Synth. Biol., 2017, 6, (7), pp. 11151119.
    17. 17)
      • 28. Kaern, M., Elston, T.C., Blake, W.J., et al: ‘Stochasticity in gene expression: from theories to phenotypes’, Nat. Rev. Genet., 2005, 6, pp. 451464.
    18. 18)
      • 16. Badran, A.H., Guzov, V.M., Huai, Q., et al: ‘Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance’, Nature, 2016, 533, (7601), pp. 5863.
    19. 19)
      • 26. Shopera, T., Henson, W.R., Ng, A., et al: ‘Robust, tunable genetic memory from protein sequestration combined with positive feedback’, Nucleic Acids Res., 2015, 43, (18), pp. 90869094.
    20. 20)
      • 34. Stricker, J., Cookson, S., Bennett, M.R., et al: ‘A fast, robust and tunable synthetic gene oscillator’, Nature, 2008, 456, (7221), pp. 516519.
    21. 21)
      • 11. Brödel, A.K., Rodrigues, R., Jaramillo, A., et al: ‘Accelerated evolution of a minimal 63-amino acid dual transcription factor’, Sci. Adv., 2020, 6, (24), p. eaba2728.
    22. 22)
      • 29. El Karoui, M., Hoyos-Flight, M., Fletcher, L.: ‘Future trends in synthetic biology – a report’, Front. Bioeng. Biotechnol., 2019, 7, (AUG), p. 175.
    23. 23)
      • 6. Karig, D., Michael Martini, K., Lu, T., et al: ‘Stochastic turing patterns in a synthetic bacterial population’, Proc. Natl. Acad. Sci. USA, 2018, 115, (26), pp. 65726577.
    24. 24)
      • 35. Rakonjac, J.: ‘Filamentous Bacteriophages: Biology and Applications’, eLS, 2012, 13, (2), pp. 5176.
    25. 25)
      • 4. Gardner, T.S., Cantor, C.R., Collins, J.J.: ‘Construction of a genetic toggle switch in Escherichia coli’, Nature, 2000, 403, (6767), pp. 339342.
    26. 26)
      • 17. Basu, S., Gerchman, Y., Collins, C.H., et al: ‘A synthetic multicellular system for programmed pattern formation’, Nature, 2005, 434, (7037), pp. 11301134.
    27. 27)
      • 24. Ferrell, J.E.: ‘Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability’, Curr. Opin. Cell Biol., 2002, 14, (2), pp. 140148.
    28. 28)
      • 32. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., et al: ‘Universally sloppy parameter sensitivities in systems biology models’, PLOS Comput. Biol., 2007, 3, (10), pp. 18711878.
    29. 29)
      • 15. Flores-Kim, J., Darwin, A.J.: ‘The phage shock protein response’, Annu. Rev. Microbiol., 2016, 70, (1), pp. 83101.
    30. 30)
      • 31. Joly, N., Schumacher, J., Buck, M.: ‘Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator’, J. Biol. Chem., 2006, 281, (46), pp. 3499735007.
    31. 31)
      • 22. Toni, T., Welch, D., Strelkowa, N., et al: ‘Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems’, J. R. Soc., Interface, 2009, 6, (31), pp. 187202.
    32. 32)
      • 2. Yeoh, J.W., Ng, K.B.I., Teh, A.Y., et al: ‘An automated biomodel selection system (BMSS) for gene circuit designs’, ACS Synth. Biol., 2019, 8, (7), pp. 14841497.
    33. 33)
      • 12. Brissette, J.L., Russel, M., Weiner, L., et al: ‘Phage shock protein, a stress protein of Escherichia coli’, Proc. Natl. Acad. Sci. USA, 1990, 87, (3), pp. 862866.
    34. 34)
      • 21. Schaerli, Y., Munteanu, A., Gili, M., et al: ‘A unified design space of synthetic stripe-forming networks’, Nat. Commun., 2014, 5, article no: 4905.
    35. 35)
      • 27. Ozbudak, E.M., Thattai, M., Kurtser, I., et al: ‘Regulation of noise in the expression of a single gene’, Nat. Genet., 2002, 31, (1), pp. 6973.
    36. 36)
      • 7. Sekine, R., Shibata, T., Ebisuya, M.: ‘Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty’, Nat. Commun., 2018, 9, (1), p. 5456.
    37. 37)
      • 19. Gábor, A., Banga, J.R.: ‘Robust and efficient parameter estimation in dynamic models of biological systems’, BMC Syst. Biol., 2015, 9, (1), article no: 74.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2020.0009
Loading

Related content

content/journals/10.1049/enb.2020.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address