Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Hydrogen oxidising bacteria for production of single-cell protein and other food and feed ingredients

Loading full text...

Full text loading...

/deliver/fulltext/enb/4/2/ENB.2020.0005.html;jsessionid=wxox2irtlwh8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fenb.2020.0005&mimeType=html&fmt=ahah

References

    1. 1)
      • 31. Srinivasan, S., Barnard, G.C., Gerngross, T.U.: ‘Production of recombinant proteins using multiple-copy gene integration in high-cell-density fermentations of Ralstonia eutropha’, Biotechnol. Bioeng., 2003, 84, (1), pp. 114120.
    2. 2)
      • 11. Molitor, B., Mishra, A., Angenent, L.T.: ‘Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess’, Energy Environ. Sci., 2019, 12, (12), pp. 35153521.
    3. 3)
      • 16. Lavire, C. ., Normand, P., Alekhina, I., et al: ‘Presence of Hydrogenophilus thermoluteolus DNA in accretion ice in the subglacial lake vostok, Antarctica, assessed using rrs, cbb and hox’, Environ. Microbiol., 2006, 8, (12), pp. 21062114.
    4. 4)
      • 33. Müller, J., MacEachran, D., Burd, H., et al: ‘Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones’, Appl. Environ. Microbiol., 2013, 79, (14), pp. 44334439.
    5. 5)
      • 47. Heinrich, D., Raberg, M., Steinbüchel, A.: ‘Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16’, Microb. Biotechnol., 2018, 11, (4), pp. 647656.
    6. 6)
      • 12. Berg, I.A.: ‘Ecological aspects of the distribution of different autotrophic CO2 fixation pathways’, Appl. Environ. Microbiol., 2011, 77, (6), pp. 19251936.
    7. 7)
      • 9. Sillman, J., Nygren, L., Kahiluoto, H., et al: ‘Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: can it reduce land and water use?’, Glob. Food Sec., 2019, 22, pp. 2532.
    8. 8)
      • 3. Matelbs, R.I., Tannenbaum, S.E.: ‘Single-cell protein’, Econ. Bot., 1968, 22, (1), pp. 4250.
    9. 9)
      • 40. Gruber, S., Hagen, J., Schwab, H., et al: ‘Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16’, J. Biotechnol., 2014, 186, pp. 7482.
    10. 10)
      • 30. Arenas-López, C., Locker, J., Orol, D., et al: ‘The genetic basis of 3- hydroxypropanoate metabolism in Cupriavidus necator H16’, Biotechnol. Biofuels, 2019, 12, (1), p. 150.
    11. 11)
      • 15. Wilde, E.: ‘Untersuchungen über Wachstum und Speicherstoffsynthese von hydrogenomonas’, Arch. Mikrobiol., 1962, 43, (2), pp. 109137.
    12. 12)
      • 10. Bogdahn, I.: ‘Agriculture-independent, sustainable, fail-safe and efficient food production by autotrophic single-cell protein’, 2015, PeerJ PrePrints 3:e1279v2https://doi.org/10.7287/peerj.preprints.1279v2.
    13. 13)
      • 4. Snyder, H.E.: ‘Microbial sources of protein’, Adv. Food Res., 1970, 18, pp. 85140.
    14. 14)
      • 7. Boland, M.J., Rae, A.N., Vereijken, J.M., et al:The future supply of animal-derived protein for human consumption’, Trends Food Sci. Technol., 2013, 29, (1), pp. 6273.
    15. 15)
      • 23. Park, J., Kim, T., Lee, S.: ‘Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production’, BMC Syst. Biol., 2011, 5, (1), p. 101.
    16. 16)
      • 17. Matassa, S., Verstraete, W., Pikaar, I., et al: ‘Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria’, Water Res.., 2016, 101, pp. 137146.
    17. 17)
      • 28. Lindenkamp, N., Peplinski, K., Volodina, E., et al: ‘Impact of multiple β-ketothiolase deletion mutations in Ralstonia eutropha H16 on the composition of 3-mercaptopropionic acid-containing copolymers’, Appl. Environ. Microbiol., 2010, 76, (16), pp. 53735382.
    18. 18)
      • 27. Brämer, C.O., Steinbüchel, A.: ‘The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism the GenBank accession numbers for the nucleotide sequences of the prp gene cluster are AF325554 and AF331923’, Microbiology, 2001, 147, (8), pp. 22032214.
    19. 19)
      • 2. Boethius, A.: ‘Something rotten in Scandinavia: the world's earliest evidence of fermentation’, J. Archaeol. Sci., 2016, 66, pp. 169180.
    20. 20)
      • 19. Holder, J.W., Ulrich, J.C., DeBono, A.C., et al: ‘Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development’, PLOS Genet., 2011, 7, (9), p. e1002219.
    21. 21)
      • 52. NovoNutrients: Available at https://www.novonutrients.com/ (accessed 27 February 2020).
    22. 22)
      • 37. Bi, C., Su, P., Müller, J., et al: ‘Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production’, Microb. Cell Fact., 2013, 12, (1), p. 107.
    23. 23)
      • 43. Lütte, S., Pohlmann, A., Zaychikov, E., et al: ‘Autotrophic production of stable-isotope- labeled arginine in Ralstonia eutropha strain H16’, Appl. Environ. Microbiol., 2012, 78, (22), pp. 78847890.
    24. 24)
      • 34. Chen, J.S., Colón, B., Dusel, B., et al: ‘Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage’, PeerJ, 2015, 3, p. e1468.
    25. 25)
      • 39. Johnson, A.O., Gonzalez-Villanueva, M., Tee, K.L., et al: ‘An engineered constitutive promoter set with broad activity range for Cupriavidus necator H16’, ACS Synth. Biol., 2018, 7, (8), pp. 19181928.
    26. 26)
      • 1. Campbell-Platt, G.: ‘Fermented foods — a world perspective’, Food Res. Int., 1994, 27, (3), pp. 253257.
    27. 27)
      • 6. Alexandratos, N., Bruinsma, J.: ‘World agriculture towards 2030/2050’, 2012.
    28. 28)
      • 59. Home – Unibio: Available at https://www.unibio.dk/ (accessed 27 February 2020).
    29. 29)
      • 60. Calysta – More From Less: Available at http://calysta.com/ (accessed 27 February 2020).
    30. 30)
      • 13. Götz, D., Banta, A., Beveridge, T.J., et al: ‘Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents’, Int. J. Syst. Evol. Microbiol., 2002, 52, (4), pp. 13491359.
    31. 31)
      • 57. LanzaTech: Available at http://www.lanzatech.com/ (accessed 1 June 2017).
    32. 32)
      • 45. Garrigues, L., Maignien, L., Lombard, E., et al: ‘Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor’, New Biotechnol., 2020, 56, pp. 1620.
    33. 33)
      • 25. Hoppensack, A., Rehm, B.H.A., Steinbüchel, A.: ‘Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of β-alanine auxotrophic Tn5 mutants and cloning of the panD gene region’, J. Bacteriol., 1999, 181, (5), pp. 14291435.
    34. 34)
      • 46. Windhorst, C., Gescher, J.: ‘Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16’, Biotechnol. Biofuels, 2019, 12, (1), p. 163.
    35. 35)
      • 53. Home-Solar Foods Ltd: Available at https://solarfoods.fi/ (accessed 27 February 2020).
    36. 36)
      • 5. United Nations, Department of Economic and Social Affairs, Population Division, ‘World Population Prospects 2019: Highlights (ST/ESA/SER.A/423)’, 2019.
    37. 37)
      • 22. Little, G.T., Ehsaan, M., Arenas-López, C., et al: ‘Complete genome sequence of Cupriavidus necator H16 (DSM 428)’, Microbiol. Resour. Announc., 2019, 8, p. 37.
    38. 38)
      • 32. Voss, I., Steinbüchel, A.: ‘Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16’, Metab. Eng., 2006, 8, (1), pp. 6678.
    39. 39)
      • 29. Budde, C.F., Mahan, A.E., Lu, J., et al: ‘Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16’, J. Bacteriol., 2010, 192, (20), pp. 53195328.
    40. 40)
      • 48. Garcia-Gonzalez, L., De Wever, H.: ‘Valorisation of CO2-rich off-gases to biopolymers through biotechnological process’, FEMS Microbiol. Lett., 2017, 364, (20), https://doi.org/10.1093/femsle/fnx196.
    41. 41)
      • 20. Meusel, M., Rehm, H.-J.: ‘Biodegradation of dichloroacetic acid by freely suspended and adsorptive immobilized Xanthobacter autotrophicus GJ10 in soil’, Appl. Microbiol. Biotechnol., 1993, 40, (1), pp. 165171.
    42. 42)
      • 38. Alagesan, S., Hanko, E.K.R., Malys, N., et al: ‘Functional genetic elements for controlling gene expression in Cupriavidus necator H16’, Appl. Environ. Microbiol., 2018, 84, (19), pp. e0087818.
    43. 43)
      • 54. Oesterholt, F., Broeders, E., Zamalloa, C.: ‘Power-to- protein: eiwitproductie in een circulaire economie’, KWR 2018.078, 2019.
    44. 44)
      • 26. Wang, Z.-X., Brämer, C.O., Steinbüchel, A.: ‘The glyoxylate bypass of Ralstonia eutropha’, FEMS Microbiol. Lett., 2003, 228, (1), pp. 6371.
    45. 45)
      • 36. Fukui, T., Suzuki, M., Tsuge, T., et al: ‘Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator’, Biomacromolecules, 2009, 10, (4), pp. 700706.
    46. 46)
      • 50. Monbiot, G.: ‘Lab-grown food will soon destroy farming – and save the planet’, The Guardian, 2019.
    47. 47)
      • 8. Henchion, M., Hayes, M., Mullen, A., et al: ‘Future protein supply and demand: strategies and factors influencing a sustainable equilibrium’, Foods, 2017, 6, (7), p. 53.
    48. 48)
      • 18. Dou, J., Huang, Y., Ren, H., et al: ‘Autotrophic, heterotrophic, and mixotrophic nitrogen assimilation for single-cell protein production by two hydrogen-oxidizing bacterial strains’, Appl. Biochem. Biotechnol., 2019, 187, (1), pp. 338351.
    49. 49)
      • 56. Abrini, J., Naveau, H., Nyns, E.-J.: ‘Clostridium autoethanogenum sp. Nov., an anaerobic bacterium that produces ethanol from carbon monoxide’, Arch. Microbiol., 1994, 161, (4), pp. 345351.
    50. 50)
      • 55. Deep Branch Biotechnology – Transforming the polluters of today into the producers of tomorrow’. Available at https://deepbranchbio.com/ (accessed 27 February 2020).
    51. 51)
      • 49. Does it contain genetically modified ingredients? – Impossible foods’ [Online]. Available at https://faq.impossiblefoods.com/hc/en-us/articles/360023038894-Does-it-contain-genetically-modified-ingredients (Accessed 26 February 2020).
    52. 52)
      • 14. Ohi, K., Komemushi, S., Okazaki, M., et al: ‘A new species of hydrogen-utilizing bacterium’, J. Gen. Appl. Microbiol., 1979, 25, (1), pp. 5358.
    53. 53)
      • 42. Sato, S., Maruyama, H., Fujiki, T., et al: ‘Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate’, J. Biosci. Bioeng., 2015, 120, (3), pp. 246251.
    54. 54)
      • 35. Grousseau, E., Lu, J., Gorret, N., et al: ‘Isopropanol production with engineered Cupriavidus necator as bioproduction platform’, Appl. Microbiol. Biotechnol., 2014, 98, (9), pp. 42774290.
    55. 55)
      • 44. Krieg, T., Sydow, A., Faust, S., et al: ‘CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator’, Angew. Chem. Int. Ed., 2018, 57, (7), pp. 18791882.
    56. 56)
      • 41. Sydow, A., Pannek, A., Krieg, T., et al: ‘Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system’, J. Biotechnol., 2017, 263, pp. 110.
    57. 57)
      • 58. Electrochaea GmbH – Power-to-Gas Energy Storage | Technology: Available at http://www.electrochaea.com/technology/ (accessed 10 May2017).
    58. 58)
      • 24. Schubert, P., Steinbüchel, A., Schlegel, H.G.: ‘Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli’, J. Bacteriol., 1988, 170, (12), pp. 58375847.
    59. 59)
      • 51. Kiverdi, Inc.: Available at https://www.kiverdi.com/ (accessed 27 February 2020).
    60. 60)
      • 21. Foster, J.F., Litchfield, J.H.: ‘A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle space systems’, Biotechnol. Bioeng., 1964, 6, (4), pp. 441456.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2020.0005
Loading

Related content

content/journals/10.1049/enb.2020.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address