access icon openaccess Engineering solventogenic clostridia for commercial production of bio-chemicals

The manufacture of bio-chemicals through the use of microbial fermentation and renewable feedstock has a number of well-known advantages linked to sustainability and reduced impacts on the environment. Markets for molecules produced with greener credentials are growing as consumers become more aware of what is in the formulated products they use every day. The use of solventogenic clostridia has now been re-commercialised for the production of bio-acetone and bio-n-butanol. The different impurity profiles of these bio-based molecules compared with petro-versions results in performance advantages in downstream derivatisation chemistry, giving an added benefit alongside sustainability advantages. Advances in genome editing now enable us to take the benefits observed with clostridial fermentation and apply them to the production of the next generation of bio-molecules.

Inspec keywords: genomics; biotechnology; renewable materials; impurities; chemical engineering; biofuel; microorganisms; renewable energy sources; fermentation; organic compounds

Other keywords: petro-version result; bio-n-butanol production; genome editing method; environmental impact reduction; impurity profiles; solventogenic clostridia; renewable feedstock; microbial fermentation process; bio-acetone production; bio-chemical production

Subjects: Chemical industry; Biofuel and biomass resources; Products and commodities; Fuel processing industry; Biotechnology industry; Industrial processes; Engineering materials

References

    1. 1)
      • 23. ‘Greenhouse gas emissions study’. Available at: https://greenbiologics.com/sustainability/greenhouse-gas-ghg-impacts-for-bio-based-n-butanol, accessed 24th March 2019.
    2. 2)
      • 29. Zhang, J., Zong, W., Hong, W., et al: ‘Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production’, Metab. Eng., 2018, 47, pp. 4959, DOI: 10.1016/j.ymben.2018.03.007.
    3. 3)
      • 7. Green, E.: ‘Fermentative production of butanol-the industrial perspective’, Curr. Opin. Biotechnol., 2011, 22, (3), pp. 337343.
    4. 4)
      • 20. Kaur, J., Kaur, K., Toor, A.P.: ‘Sulfated iron oxide-catalyzed esterification of acetic acid with n-butanol by reactive distillation’, Chem. Eng. Technol., 2018, 41, (11), pp. 21962202.
    5. 5)
      • 16. Altiokka, M.R., Citak, A.: ‘Kinetics study of esterification of acetic acid with isobutanol in the presence of amberlite catalyst’, Appl. Cat. A Gen., 2003, 239, pp. 141148.
    6. 6)
      • 28. Wang, S., Dong, S., Wang, P., et al: ‘Genome editing in Clostridium saccharoperbutylacetonicum N1-4 using CRISPR-Cas9 system’, Appl. Environ. Microbiol., 2017, 83, (10), DOI: 10.1128/AEM.00233-17.
    7. 7)
      • 10. Atmadjaja, A.N., Holby, V., Harding, A.J., et al: ‘CRISPR-Cas, a highly effective tool for genome editing in Clostridium saccharoperbutylacetonicum N1-4(HMT)’, FEMS Microbiol. Lett., 2019, 366, (6), DOI: 10.1093/femsle/fnz059.
    8. 8)
      • 30. Pyne, M.E., Bruder, M., Moo-Young, M., et al: ‘Harnessing heterologous and endogenous CRISPR-cas machineries for efficient markerless genome editing in Clostridium’, Sci. Rep., 2016, 6, article number 25666, DOI: 10.1038/srep25666.
    9. 9)
      • 36. Xiao, Z., Cheng, C., Bao, T., et al: ‘Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis’, Biotechnol. Biofuels, 2018, 11, (164), DOI: 10.1186/s13068-018-1165-1.
    10. 10)
      • 35. Pyne, M.E., Sokolenko, S., Liu, X., et al: ‘Disruption of the reductive 1,3-propanediol pathway triggers production of 1,2-propanediol for sustained glycerol fermentation by Clostridium pasteurianum’, Appl. Environ. Microbiol., 2018, 82, (17), pp. 53755388.
    11. 11)
      • 15. Bauer, K., Garbe, D., Surburg, H.: ‘Common fragrance and flavor materials: preparation and uses’ (Wiley-VCH, Weinheim, Germany, 1985, 4th edn. 2001).
    12. 12)
      • 14. ‘Unilever: Sustainable living’. Available at: https://www.unilever.co.uk/sustainable-living/, accessed 21 March 2019.
    13. 13)
      • 5. ‘Green Biologics begins customer shipments at first commercial plant’. Available at: https://greenbiologics.com/2016/12, accessed 24th March 2019.
    14. 14)
      • 17. Smith, J.M.: ‘Chemical engineering kinetics’ (McGraw-Hill, New York, USA, 1970, 2nd edn. 1981).
    15. 15)
      • 9. Oud, B., Guadalupe-Medina, V., Nijkamp, J.F., et al: ‘Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved saccharomyces cerevisiae’, Proc. Natl. Acad. Sci. USA, 2013, 110, pp. E4223E4231.
    16. 16)
      • 27. Jenkinson, E., Krabben, P.: ‘Targeted Mutations’. UK granted patent GB2530831B, 2016 (first published in 2015 as WO2015159087A).
    17. 17)
      • 33. Heap, J.T., Ehsaan, M., Cooksley, C.M., et al: ‘Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker’, Nucleic Acids Res., 2012, 40, (8), DOI: 10.1093/nar/gkr1321.
    18. 18)
      • 12. ‘Specialty chemicals market size’. Available at: https://www.marketwatch.com/press-release/specialty-chemicals-market-size-is-expected-to-reach-197-trillion-by-2026-growing-at-a-cagr-of-65-during-the-forecast-period-2018-12-07, accessed 24 March 2019.
    19. 19)
      • 26. Wang, Y., Zhang, Z.T., Seo, S.O., et al: ‘Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system’, J. Biotechnol., 2015, 200, pp. 15, DOI: 10.1016/j.jbiotec.2015.02.005.
    20. 20)
      • 19. Guliani, D., Kaur, K., Singh, N., et al: ‘Catalytic performance of sulfate-grafter graphene oxide for esterification of acetic acid with methanol’, Chem. Eng. Commun., 2019, 206, (5), pp. 592604.
    21. 21)
      • 3. ‘ACS - 12 design principles of green chemistry’. Available at: https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry.html, accessed 24 March 2019.
    22. 22)
      • 18. Tsai, Y., Lin, H., Lee, M.: ‘Kinetics behaviour of esterification of acetic acid with methanol over Amberlyst 36’, Chem. Eng. J., 2011, 171, pp. 13671372.
    23. 23)
      • 21. Lehner, M., Halliday, S.V.: ‘Branding sustainability: opportunity and risk behind a brand-based approach to sustainable markets’, Ephemera Theory Politics Org., 2014, 14, (1), pp. 1334.
    24. 24)
      • 32. Heap, J.T., Pennington, O.J., Cartman, S.T., et al: ‘The ClosTron: a universal gene knock-out system for the genus Clostridium’, J. Microbiol. Methods, 2007, 70, (3), pp. 452464.
    25. 25)
      • 25. Li, Q., Chen, J., Minton, N.P., et al: ‘CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii’, Biotechnol. J., 2016, 11, pp. 961972.
    26. 26)
      • 6. Weizmann, C.: ‘Improvement in the bacterial fermentation of carbohydrates and in bacterial cultures for the same’. British Patent 4845, 1915.
    27. 27)
      • 2. Woodley, J.M., Breuer, M., Mink, D.: ‘A future perspective on the role of industrial biotechnology for chemicals production’, Chem. Eng. Res. Des., 2013, 91, pp. 20292036.
    28. 28)
      • 1. Jones, D.T., Woods, D.R.: ‘Acetone-butanol fermentation revisited’, Microbiol. Rev., 1986, 50, (4), pp. 484524.
    29. 29)
      • 22. European Commission, Joint Research Centre, Institute for Environment and Sustainability: ‘International reference life cycle data system (ILCD) handbook - general guide for life cycle assessment - detailed guidance’ (Publications Office of the European Union, Luxembourg, 2010, 1st edn. March 2010. EUR 24708 EN).
    30. 30)
      • 31. Huang, H., Chai, C., Li, N., et al: ‘CRISPR/cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium’, ACS Synth. Biol., 2016, 5, (12), pp. 13551361.
    31. 31)
      • 34. Máté de Gérando, H., Wasels, F., Bisson, A., et al: ‘Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423’, BMC Genomics, 2018, 19, p. 242.
    32. 32)
      • 4. Sauer, M.: ‘Industrial production of acetone and butanol by fermentation - 100 years later’, FEMS Microbiol. Lett., 2016, 363, (13), DOI: 10.1093/femsle/fnw134.
    33. 33)
      • 11. Kolesinska, B., Fraczyk, J., Binczarski, M., et al: ‘Butanol synthesis routes for biofuel production: trends and perspectives’, Materials. (Basel), 2019, 12, p. 350.
    34. 34)
      • 13. ‘Croda – Green Chemistry’. Available at: https://www.croda.com/en-gb/sustainability/material-areas/product-design/green-chemistry/, accessed 21 March 2019.
    35. 35)
      • 24. ‘Green Biologics C3-ONE (Renewable Acetone)’. Available at: https://greenbiologics.com/wp-content/uploads/2019/01/GBIAcetoneSalesSpecification2019.pdf, accessed 27 March 2019.
    36. 36)
      • 8. Mans, R., Daran, J.-M.G., Pronk, J.T.: ‘Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production’, Curr. Opin. Biotechnol., 2018, 50, pp. 4756.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2019.0008
Loading

Related content

content/journals/10.1049/enb.2019.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading