Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Future-proofing synthetic biology: educating the next generation

Synthetic biology is a relatively young field, although it builds upon disciplines whose roots go back centuries. Recently, its practitioners have tended to move into the field out of interest or by chance, and come from a wide variety of backgrounds. It is also a very fast-moving field; new protocols, laboratory equipment, computational facilities and algorithms are being developed at a rapid pace. Students who start studying synthetic biology at an undergraduate or postgraduate level will, in the course of their careers, work with technologies as yet undreamt of, and will do so mostly in the context of highly interdisciplinary teams. In this study, the authors identify some of the key areas required for the education of new synthetic biologists to equip them with both adequate background and sufficient flexibility to tackle these challenges and therefore to future-proof synthetic biology.

References

    1. 1)
      • 56. Goñi-Moreno, A., Carcajona, M., Kim, J., et al: ‘An implementation-focused bio/algorithmic workflow for synthetic biology’, ACS Synth. Biol., 2016, 5, (10), pp. 11271135.
    2. 2)
      • 59. Hucka, M., Finney, A., Sauro, H.M., et al: ‘The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models’, Bioinformatics, 2003, 19, (4), pp. 524531.
    3. 3)
      • 65. Calvert, J., Martin, P.: ‘The role of social scientists in synthetic biology’, EMBO Rep., 2009, 10, (3), pp. 201204.
    4. 4)
      • 61. Martínez-García, E., Aparicio, T., Goñi-Moreno, A., et al: ‘SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities’, Nucleic Acids Res., 2014, 43, (D1), pp. D1183D1189.
    5. 5)
      • 23. Porcar, M., Peretó, J.: ‘Synthetic biology: from iGEM to the artificial cell’ (Springer, The Netherlands, 2014).
    6. 6)
      • 43. Dallard, P., Fitzpatrick, T., Flint, A., et al: ‘London millennium bridge: pedestrian-induced lateral vibration’, J. Bridge Eng., 2001, 6, (6), pp. 412417.
    7. 7)
      • 11. Huang, A., Nguyen, P.Q., Stark, J.C., et al: ‘Biobits™ explorer: a modular synthetic biology education kit’, Sci. Adv., 2018, 4, (8), p. eaat5105.
    8. 8)
      • 42. Amman, O.H., von Kármán, T., Woodruff, G.B.: ‘The failure of the Tacoma Narrows bridge’, 1941.
    9. 9)
      • 17. Misirli, G., Hallinan, J.S., Yu, T., et al: ‘Model annotation for synthetic biology: automating model to nucleotide sequence conversion’, Bioinformatics, 2011, 27, (7), pp. 973979.
    10. 10)
      • 50. Howison, J., Bullard, J.: ‘Software in the scientific literature: problems with seeing, finding, and using software mentioned in the biology literature’, J. Assoc. Inf. Sci. Technol., 2016, 67, (9), pp. 21372155.
    11. 11)
      • 60. Cox, R.S., Madsen, C., McLaughlin, J.A., et al: ‘Synthetic biology open language (SBOL) version 2.2.0’, J. Integr. Bioinform., 2018, 15, (1).
    12. 12)
      • 28. McLeod, C., Nerlich, B.: ‘Synthetic biology, metaphors and responsibility’, Life. Sci. Soc. Policy., 2017, 13, (1), p. 13.
    13. 13)
      • 9. Mitchell, R., Dori, Y.J., Kuldell, N.H.: ‘Experiential engineering through iGEM—an undergraduate summer competition in synthetic biology’, J. Sci. Educ. Technol., 2011, 20, (2), pp. 156160.
    14. 14)
      • 63. Gibson, D.G., Young, L., Chuang, R.-Y., et al: ‘Enzymatic assembly of DNA molecules up to several hundred kilobases’, Nat. Methods, 2009, 6, (5), p. 343.
    15. 15)
      • 69. Goñi-Moreno, A., Wipat, A., Krasnogor, N.: ‘CSBB: synthetic biology research at Newcastle University’, Biochem. Soc. Trans., 2017, 45, (3), pp. 781783.
    16. 16)
      • 26. Feynman, R.P., Leighton, R.: ‘‘Surely you're joking, Mr. Feynman!’: adventures of a curious character’ (Random House, London, UK, 1992).
    17. 17)
      • 39. Liu, W., Stewart, C.N.: ‘Plant synthetic biology’, Trends Plant Sci., 2015, 20, (5), pp. 309317.
    18. 18)
      • 29. de Lorenzo, V.: ‘Beware of metaphors: chasses and orthogonality in synthetic biology’, Bioeng. Bugs., 2011, 2, (1), pp. 37.
    19. 19)
      • 16. Sainz de Murieta, I., Bultelle, M., Kitney, R.I.: ‘Toward the first data acquisition standard in synthetic biology’, ACS Synth. Biol., 2016, 5, (8), pp. 817826.
    20. 20)
      • 22. Iverson, S.V., Haddock, T.L., Beal, J., et al: ‘CIDAR moclo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology’, ACS Synth. Biol., 2015, 5, (1), pp. 99103.
    21. 21)
      • 35. Nikel, P.I., Chavarría, M., Danchin, A., et al: ‘From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions’, Curr. Opin. Chem. Biol., 2016, 34, pp. 2029.
    22. 22)
      • 55. Smith, B., Ashburner, M., Rosse, C., et al: ‘The OBO foundry: coordinated evolution of ontologies to support biomedical data integration’, Nat. Biotechnol., 2007, 25, (11), pp. 12511255.
    23. 23)
      • 12. Karamasioti, E., Lormeau, C., Stelling, J.: ‘Computational design of biological circuits: putting parts into context’, Mol. Syst. Des. Eng., 2017, 2, (4), pp. 410421.
    24. 24)
      • 32. Danchin, A.: ‘Bacteria as computers making computers’, FEMS Microbiol. Rev., 2008, 33, (1), pp. 326.
    25. 25)
      • 40. Hodgman, C.E., Jewett, M.C.: ‘Cell-free synthetic biology: thinking outside the cell’, Metab. Eng., 2012, 14, (3), pp. 261269.
    26. 26)
      • 54. James, K., Tarn, J.R., Al-Ali, S., et al: ‘Integration of gene expression data with interaction and annotation data reveals patterns of connection between Primary Sjögren's Syndrome associated genes and immune processes’, Rheumatology, 2014, 53, (suppl. 1), p. 136-i.
    27. 27)
      • 46. Myers, C.J., Barker, N.A., Jones, K.R., et al: ‘iBioSim: a tool for the analysis and design of genetic circuits’, Bioinformatics, 2009, 25, (21), pp. 28482849.
    28. 28)
      • 67. Balmer, A.S., Calvert, J., Marris, C., et al: ‘Taking roles in interdisciplinary collaborations: reflections on working in post-ELSI spaces in the UK synthetic biology community’, Sci. Technol. Stud., 2015, 28, (3), pp. 325.
    29. 29)
      • 45. Appleton, E., Madsen, C., Roehner, N., et al: ‘Design automation in synthetic biology’, Cold Spring Harbor Perspect. Biol., 2017, 9, (4), p. a023978.
    30. 30)
      • 1. Amos, M., Goni-Moreno, A.: ‘Cellular computing and synthetic biology’, ‘Computational matter’ (Springer, Cham, Switzerland, 2018), pp. 93110.
    31. 31)
      • 15. Mukherji, S., Van Oudenaarden, A.: ‘Synthetic biology: understanding biological design from synthetic circuits’, Nat. Rev. Genetics, 2009, 10, (12), p. 859.
    32. 32)
      • 20. Lindner, R., Kuhlmann, S., Randles, S., et al: ‘Navigating towards shared responsibility in research and innovation: approach, process and results of the Res-AGorA Project’ (Fraunhofer Institute for Systems and Innovation Research ISI, 2016).
    33. 33)
      • 44. Nowogrodzki, A.: ‘The automatic-design tools that are changing synthetic biology’, Nature, 2018, 564, (7735), p. 291.
    34. 34)
      • 19. Galdzicki, M., Clancy, K.P., Oberortner, E., et al: ‘The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology’, Nat. Biotechnol., 2014, 32, (6), p. 545.
    35. 35)
      • 48. Goni-Moreno, A., Amos, M., (Eds.): ‘DiSCUS: a simulation platform for conjugation computing’. Int. Conf. on Unconventional Computation and Natural Computation, Auckland, New Zealand, 2015, pp. 181191.
    36. 36)
      • 47. Hoops, S., Sahle, S., Gauges, R., et al: ‘COPASI – a complex pathway simulator’, Bioinformatics, 2006, 22, (24), pp. 30673074.
    37. 37)
      • 37. Cong, L., Ran, F.A., Cox, D., et al: ‘Multiplex genome engineering using CRISPR/Cas systems’, Science, 2013, 339, p. 1231143.
    38. 38)
      • 34. Cvijovic, M., Höfer, T., Aćimović, J., et al: ‘Strategies for structuring interdisciplinary education in systems biology: an European perspective’, NPJ Syst. Biol. Appl., 2016, 2, p. 16011.
    39. 39)
      • 18. Schreiber, F., Bader, G.D., Golebiewski, M., et al: ‘Specifications of standards in systems and synthetic biology’, J. Integr. Bioinform., 2015, 12, (2), pp. 13.
    40. 40)
      • 25. Winowiecki, L., Smukler, S., Shirley, K., et al: ‘Tools for enhancing interdisciplinary communication’, Sustainability, Sci. Pract. Policy, 2011, 7, (1), pp. 7480.
    41. 41)
      • 5. Craddock, T., Harwood, C.R., Hallinan, J., et al: ‘e-Science: relieving bottlenecks in large-scale genome analyses’, Nat. Rev. Microbiol., 2008, 6, (12), p. 948.
    42. 42)
      • 21. Casini, A.: ‘Advanced DNA assembly strategies and standards for synthetic biology’, 2014.
    43. 43)
      • 68. Stilgoe, J., Owen, R., Macnaghten, P.: ‘Developing a framework for responsible innovation’, Res. Policy, 2013, 42, (9), pp. 15681580.
    44. 44)
      • 52. Navarro, J.D., Talreja, N., Peri, S., et al: ‘Biobuilder as a database development and functional annotation platform for proteins’, BMC Bioinf., 2004, 5, (1), p. 43.
    45. 45)
      • 3. Cameron, D.E., Bashor, C.J., Collins, J.J.: ‘A brief history of synthetic biology’, Nat. Rev. Microbiol., 2014, 12, (5), p. 381.
    46. 46)
      • 24. Dymond, J.S., Scheifele, L.Z., Richardson, S., et al: ‘Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course’, Genetics, 2009, 181, (1), pp. 1321.
    47. 47)
      • 36. Popp, P.F., Dotzler, M., Radeck, J., et al: ‘The bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis’, Sci. Rep., 2017, 7, (1), p. 15058.
    48. 48)
      • 33. Cheng, A.A., Lu, T.K.: ‘Synthetic biology: an emerging engineering discipline’, Annu. Rev. Biomed. Eng., 2012, 14, pp. 155178.
    49. 49)
      • 62. Engler, C., Marillonnet, S.: ‘Golden gate cloning’, Methods Mol. Biol., 2014, 1116, pp. 119131.
    50. 50)
      • 27. Goñi-Moreno, A., Redondo-Nieto, M., Arroyo, F., et al: ‘Biocircuit design through engineering bacterial logic gates’, Nat. Comput., 2011, 10, (1), pp. 119127.
    51. 51)
      • 49. Swainston, N., Dunstan, M., Jervis, A.J., et al: ‘Partsgenie: an integrated tool for optimising and sharing synthetic biology parts’, Bioinformatics, 2018, 1, p. 3.
    52. 52)
      • 14. Brophy, J.A., Voigt, C.A.: ‘Principles of genetic circuit design’, Nat. Methods, 2014, 11, (5), p. 508.
    53. 53)
      • 2. Gardner, T.S.: ‘Synthetic biology: from hype to impact’, Trends Biotechnol., 2013, 31, (3), pp. 123125.
    54. 54)
      • 53. McLaughlin, J.A., Myers, C.J., Zundel, Z., et al: ‘Synbiohub: a standards-enabled design repository for synthetic biology’, ACS Synth. Biol., 2018, 7, (2), pp. 682688.
    55. 55)
      • 64. Church, G.M., Elowitz, M.B., Smolke, C.D., et al: ‘Realizing the potential of synthetic biology’, Nat. Rev. Mol. Cell Biol., 2014, 15, (4), p. 289.
    56. 56)
      • 8. Snow, C.P.: ‘The two cultures and the scientific revolution(Repr.) (University Press, Cambridge, 1959).
    57. 57)
      • 51. Galperin, M.Y., Fernández-Suárez, X.M., Rigden, D.J.: ‘The 24th annual nucleic acids research database issue: a look back and upcoming changes’, Nucleic Acids Res., 2017, 45, (D1), pp. D1D11.
    58. 58)
      • 31. Goñi-Moreno, A.: ‘On genetic logic circuits: forcing digital electronics standards?’, Memet. Comput., 2014, 6, (3), pp. 149155.
    59. 59)
      • 7. Farny, N.G.: ‘A vision for teaching the values of synthetic biology’, Trends Biotechnol., 2018, 36, (11), pp. 10971100.
    60. 60)
      • 6. Kuldell, N.: ‘Authentic teaching and learning through synthetic biology’, J. Biol. Eng., 2007, 1, (1), p. 8.
    61. 61)
      • 10. Cazimoglu, I., Darlington, A.P., Grigonyte, A., et al: ‘Developing a graduate training programme in synthetic biology: SynBioCDT’, Synth. Biol., 2019, 4, (1), Article ID: ysz006.
    62. 62)
      • 66. Wolfe, A.K., Campa, M.F., Bergmann, R.A., et al: ‘Synthetic biology R&D risks: social–institutional contexts matter!’, Trends Biotechnol., 2016, 34, (5), pp. 353356.
    63. 63)
      • 41. Box, G.E.P.: ‘Evolutionary operation: a method for increasing industrial productivity’, Appl. Stat., 1957, 6, (2), pp. 81101.
    64. 64)
      • 58. Myers, C.J., Beal, J., Gorochowski, T.E., et al: ‘A standard-enabled workflow for synthetic biology’, Biochem. Soc. Trans., 2017, 45, (3), pp. 793803.
    65. 65)
      • 30. Goñi-Moreno, A., Amos, M.: ‘A reconfigurable NAND/NOR genetic logic gate’, BMC Syst. Biol., 2012, 6, (1), p. 126.
    66. 66)
      • 71. Dixon, J., Kuldell, N.: ‘Biobuilding: using banana-scented bacteria to teach synthetic biology’, Methods Enzymol., 2011, 497, pp. 255271.
    67. 67)
      • 70. Goñi-Moreno, A., Benedetti, I., Kim, J., et al: ‘Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay’, ACS Synth. Biol., 2017, 6, (7), pp. 13591369.
    68. 68)
      • 38. Lienert, F., Lohmueller, J.J., Garg, A., et al: ‘Synthetic biology in mammalian cells: next generation research tools and therapeutics’, Nat. Rev. Mol. Cell Biol., 2014, 15, (2), p. 95.
    69. 69)
      • 13. Mısırlı, G., Madsen, C., de Murieta, I.S., et al: ‘Constructing synthetic biology workflows in the cloud’, Eng. Biol., 2017, 1, (1), pp. 6165.
    70. 70)
      • 4. de Lorenzo, V., Prather, K.L., Chen, G.Q., et al: ‘The power of synthetic biology for bioproduction, remediation and pollution control: the UN's sustainable development goals will inevitably require the application of molecular biology and biotechnology on a global scale’, EMBO Rep., 2018, p. e45658.
    71. 71)
      • 57. Beal, J., Weiss, R., Densmore, D., et al: ‘An end-to-end workflow for engineering of biological networks from high-level specifications’, ACS Synth. Biol., 2012, 1, (8), pp. 317331.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2019.0001
Loading

Related content

content/journals/10.1049/enb.2019.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address