Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Future-proofing synthetic biology: educating the next generation

Loading full text...

Full text loading...

/deliver/fulltext/enb/3/2/ENB.2019.0001.html;jsessionid=d621pr47sbknk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fenb.2019.0001&mimeType=html&fmt=ahah

References

    1. 1)
      • 36. Popp, P.F., Dotzler, M., Radeck, J., et al: ‘The bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis’, Sci. Rep., 2017, 7, (1), p. 15058.
    2. 2)
      • 18. Schreiber, F., Bader, G.D., Golebiewski, M., et al: ‘Specifications of standards in systems and synthetic biology’, J. Integr. Bioinform., 2015, 12, (2), pp. 13.
    3. 3)
      • 68. Stilgoe, J., Owen, R., Macnaghten, P.: ‘Developing a framework for responsible innovation’, Res. Policy, 2013, 42, (9), pp. 15681580.
    4. 4)
      • 10. Cazimoglu, I., Darlington, A.P., Grigonyte, A., et al: ‘Developing a graduate training programme in synthetic biology: SynBioCDT’, Synth. Biol., 2019, 4, (1), Article ID: ysz006.
    5. 5)
      • 60. Cox, R.S., Madsen, C., McLaughlin, J.A., et al: ‘Synthetic biology open language (SBOL) version 2.2.0’, J. Integr. Bioinform., 2018, 15, (1).
    6. 6)
      • 7. Farny, N.G.: ‘A vision for teaching the values of synthetic biology’, Trends Biotechnol., 2018, 36, (11), pp. 10971100.
    7. 7)
      • 23. Porcar, M., Peretó, J.: ‘Synthetic biology: from iGEM to the artificial cell’ (Springer, The Netherlands, 2014).
    8. 8)
      • 32. Danchin, A.: ‘Bacteria as computers making computers’, FEMS Microbiol. Rev., 2008, 33, (1), pp. 326.
    9. 9)
      • 17. Misirli, G., Hallinan, J.S., Yu, T., et al: ‘Model annotation for synthetic biology: automating model to nucleotide sequence conversion’, Bioinformatics, 2011, 27, (7), pp. 973979.
    10. 10)
      • 8. Snow, C.P.: ‘The two cultures and the scientific revolution(Repr.) (University Press, Cambridge, 1959).
    11. 11)
      • 66. Wolfe, A.K., Campa, M.F., Bergmann, R.A., et al: ‘Synthetic biology R&D risks: social–institutional contexts matter!’, Trends Biotechnol., 2016, 34, (5), pp. 353356.
    12. 12)
      • 2. Gardner, T.S.: ‘Synthetic biology: from hype to impact’, Trends Biotechnol., 2013, 31, (3), pp. 123125.
    13. 13)
      • 5. Craddock, T., Harwood, C.R., Hallinan, J., et al: ‘e-Science: relieving bottlenecks in large-scale genome analyses’, Nat. Rev. Microbiol., 2008, 6, (12), p. 948.
    14. 14)
      • 51. Galperin, M.Y., Fernández-Suárez, X.M., Rigden, D.J.: ‘The 24th annual nucleic acids research database issue: a look back and upcoming changes’, Nucleic Acids Res., 2017, 45, (D1), pp. D1D11.
    15. 15)
      • 21. Casini, A.: ‘Advanced DNA assembly strategies and standards for synthetic biology’, 2014.
    16. 16)
      • 13. Mısırlı, G., Madsen, C., de Murieta, I.S., et al: ‘Constructing synthetic biology workflows in the cloud’, Eng. Biol., 2017, 1, (1), pp. 6165.
    17. 17)
      • 19. Galdzicki, M., Clancy, K.P., Oberortner, E., et al: ‘The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology’, Nat. Biotechnol., 2014, 32, (6), p. 545.
    18. 18)
      • 61. Martínez-García, E., Aparicio, T., Goñi-Moreno, A., et al: ‘SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities’, Nucleic Acids Res., 2014, 43, (D1), pp. D1183D1189.
    19. 19)
      • 70. Goñi-Moreno, A., Benedetti, I., Kim, J., et al: ‘Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay’, ACS Synth. Biol., 2017, 6, (7), pp. 13591369.
    20. 20)
      • 22. Iverson, S.V., Haddock, T.L., Beal, J., et al: ‘CIDAR moclo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology’, ACS Synth. Biol., 2015, 5, (1), pp. 99103.
    21. 21)
      • 26. Feynman, R.P., Leighton, R.: ‘‘Surely you're joking, Mr. Feynman!’: adventures of a curious character’ (Random House, London, UK, 1992).
    22. 22)
      • 69. Goñi-Moreno, A., Wipat, A., Krasnogor, N.: ‘CSBB: synthetic biology research at Newcastle University’, Biochem. Soc. Trans., 2017, 45, (3), pp. 781783.
    23. 23)
      • 49. Swainston, N., Dunstan, M., Jervis, A.J., et al: ‘Partsgenie: an integrated tool for optimising and sharing synthetic biology parts’, Bioinformatics, 2018, 1, p. 3.
    24. 24)
      • 24. Dymond, J.S., Scheifele, L.Z., Richardson, S., et al: ‘Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course’, Genetics, 2009, 181, (1), pp. 1321.
    25. 25)
      • 34. Cvijovic, M., Höfer, T., Aćimović, J., et al: ‘Strategies for structuring interdisciplinary education in systems biology: an European perspective’, NPJ Syst. Biol. Appl., 2016, 2, p. 16011.
    26. 26)
      • 31. Goñi-Moreno, A.: ‘On genetic logic circuits: forcing digital electronics standards?’, Memet. Comput., 2014, 6, (3), pp. 149155.
    27. 27)
      • 9. Mitchell, R., Dori, Y.J., Kuldell, N.H.: ‘Experiential engineering through iGEM—an undergraduate summer competition in synthetic biology’, J. Sci. Educ. Technol., 2011, 20, (2), pp. 156160.
    28. 28)
      • 16. Sainz de Murieta, I., Bultelle, M., Kitney, R.I.: ‘Toward the first data acquisition standard in synthetic biology’, ACS Synth. Biol., 2016, 5, (8), pp. 817826.
    29. 29)
      • 30. Goñi-Moreno, A., Amos, M.: ‘A reconfigurable NAND/NOR genetic logic gate’, BMC Syst. Biol., 2012, 6, (1), p. 126.
    30. 30)
      • 64. Church, G.M., Elowitz, M.B., Smolke, C.D., et al: ‘Realizing the potential of synthetic biology’, Nat. Rev. Mol. Cell Biol., 2014, 15, (4), p. 289.
    31. 31)
      • 63. Gibson, D.G., Young, L., Chuang, R.-Y., et al: ‘Enzymatic assembly of DNA molecules up to several hundred kilobases’, Nat. Methods, 2009, 6, (5), p. 343.
    32. 32)
      • 33. Cheng, A.A., Lu, T.K.: ‘Synthetic biology: an emerging engineering discipline’, Annu. Rev. Biomed. Eng., 2012, 14, pp. 155178.
    33. 33)
      • 58. Myers, C.J., Beal, J., Gorochowski, T.E., et al: ‘A standard-enabled workflow for synthetic biology’, Biochem. Soc. Trans., 2017, 45, (3), pp. 793803.
    34. 34)
      • 4. de Lorenzo, V., Prather, K.L., Chen, G.Q., et al: ‘The power of synthetic biology for bioproduction, remediation and pollution control: the UN's sustainable development goals will inevitably require the application of molecular biology and biotechnology on a global scale’, EMBO Rep., 2018, p. e45658.
    35. 35)
      • 57. Beal, J., Weiss, R., Densmore, D., et al: ‘An end-to-end workflow for engineering of biological networks from high-level specifications’, ACS Synth. Biol., 2012, 1, (8), pp. 317331.
    36. 36)
      • 38. Lienert, F., Lohmueller, J.J., Garg, A., et al: ‘Synthetic biology in mammalian cells: next generation research tools and therapeutics’, Nat. Rev. Mol. Cell Biol., 2014, 15, (2), p. 95.
    37. 37)
      • 40. Hodgman, C.E., Jewett, M.C.: ‘Cell-free synthetic biology: thinking outside the cell’, Metab. Eng., 2012, 14, (3), pp. 261269.
    38. 38)
      • 11. Huang, A., Nguyen, P.Q., Stark, J.C., et al: ‘Biobits™ explorer: a modular synthetic biology education kit’, Sci. Adv., 2018, 4, (8), p. eaat5105.
    39. 39)
      • 48. Goni-Moreno, A., Amos, M., (Eds.): ‘DiSCUS: a simulation platform for conjugation computing’. Int. Conf. on Unconventional Computation and Natural Computation, Auckland, New Zealand, 2015, pp. 181191.
    40. 40)
      • 35. Nikel, P.I., Chavarría, M., Danchin, A., et al: ‘From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions’, Curr. Opin. Chem. Biol., 2016, 34, pp. 2029.
    41. 41)
      • 6. Kuldell, N.: ‘Authentic teaching and learning through synthetic biology’, J. Biol. Eng., 2007, 1, (1), p. 8.
    42. 42)
      • 56. Goñi-Moreno, A., Carcajona, M., Kim, J., et al: ‘An implementation-focused bio/algorithmic workflow for synthetic biology’, ACS Synth. Biol., 2016, 5, (10), pp. 11271135.
    43. 43)
      • 46. Myers, C.J., Barker, N.A., Jones, K.R., et al: ‘iBioSim: a tool for the analysis and design of genetic circuits’, Bioinformatics, 2009, 25, (21), pp. 28482849.
    44. 44)
      • 62. Engler, C., Marillonnet, S.: ‘Golden gate cloning’, Methods Mol. Biol., 2014, 1116, pp. 119131.
    45. 45)
      • 45. Appleton, E., Madsen, C., Roehner, N., et al: ‘Design automation in synthetic biology’, Cold Spring Harbor Perspect. Biol., 2017, 9, (4), p. a023978.
    46. 46)
      • 47. Hoops, S., Sahle, S., Gauges, R., et al: ‘COPASI – a complex pathway simulator’, Bioinformatics, 2006, 22, (24), pp. 30673074.
    47. 47)
      • 14. Brophy, J.A., Voigt, C.A.: ‘Principles of genetic circuit design’, Nat. Methods, 2014, 11, (5), p. 508.
    48. 48)
      • 25. Winowiecki, L., Smukler, S., Shirley, K., et al: ‘Tools for enhancing interdisciplinary communication’, Sustainability, Sci. Pract. Policy, 2011, 7, (1), pp. 7480.
    49. 49)
      • 15. Mukherji, S., Van Oudenaarden, A.: ‘Synthetic biology: understanding biological design from synthetic circuits’, Nat. Rev. Genetics, 2009, 10, (12), p. 859.
    50. 50)
      • 1. Amos, M., Goni-Moreno, A.: ‘Cellular computing and synthetic biology’, ‘Computational matter’ (Springer, Cham, Switzerland, 2018), pp. 93110.
    51. 51)
      • 52. Navarro, J.D., Talreja, N., Peri, S., et al: ‘Biobuilder as a database development and functional annotation platform for proteins’, BMC Bioinf., 2004, 5, (1), p. 43.
    52. 52)
      • 67. Balmer, A.S., Calvert, J., Marris, C., et al: ‘Taking roles in interdisciplinary collaborations: reflections on working in post-ELSI spaces in the UK synthetic biology community’, Sci. Technol. Stud., 2015, 28, (3), pp. 325.
    53. 53)
      • 54. James, K., Tarn, J.R., Al-Ali, S., et al: ‘Integration of gene expression data with interaction and annotation data reveals patterns of connection between Primary Sjögren's Syndrome associated genes and immune processes’, Rheumatology, 2014, 53, (suppl. 1), p. 136-i.
    54. 54)
      • 12. Karamasioti, E., Lormeau, C., Stelling, J.: ‘Computational design of biological circuits: putting parts into context’, Mol. Syst. Des. Eng., 2017, 2, (4), pp. 410421.
    55. 55)
      • 65. Calvert, J., Martin, P.: ‘The role of social scientists in synthetic biology’, EMBO Rep., 2009, 10, (3), pp. 201204.
    56. 56)
      • 53. McLaughlin, J.A., Myers, C.J., Zundel, Z., et al: ‘Synbiohub: a standards-enabled design repository for synthetic biology’, ACS Synth. Biol., 2018, 7, (2), pp. 682688.
    57. 57)
      • 41. Box, G.E.P.: ‘Evolutionary operation: a method for increasing industrial productivity’, Appl. Stat., 1957, 6, (2), pp. 81101.
    58. 58)
      • 28. McLeod, C., Nerlich, B.: ‘Synthetic biology, metaphors and responsibility’, Life. Sci. Soc. Policy., 2017, 13, (1), p. 13.
    59. 59)
      • 29. de Lorenzo, V.: ‘Beware of metaphors: chasses and orthogonality in synthetic biology’, Bioeng. Bugs., 2011, 2, (1), pp. 37.
    60. 60)
      • 71. Dixon, J., Kuldell, N.: ‘Biobuilding: using banana-scented bacteria to teach synthetic biology’, Methods Enzymol., 2011, 497, pp. 255271.
    61. 61)
      • 20. Lindner, R., Kuhlmann, S., Randles, S., et al: ‘Navigating towards shared responsibility in research and innovation: approach, process and results of the Res-AGorA Project’ (Fraunhofer Institute for Systems and Innovation Research ISI, 2016).
    62. 62)
      • 55. Smith, B., Ashburner, M., Rosse, C., et al: ‘The OBO foundry: coordinated evolution of ontologies to support biomedical data integration’, Nat. Biotechnol., 2007, 25, (11), pp. 12511255.
    63. 63)
      • 27. Goñi-Moreno, A., Redondo-Nieto, M., Arroyo, F., et al: ‘Biocircuit design through engineering bacterial logic gates’, Nat. Comput., 2011, 10, (1), pp. 119127.
    64. 64)
      • 37. Cong, L., Ran, F.A., Cox, D., et al: ‘Multiplex genome engineering using CRISPR/Cas systems’, Science, 2013, 339, p. 1231143.
    65. 65)
      • 44. Nowogrodzki, A.: ‘The automatic-design tools that are changing synthetic biology’, Nature, 2018, 564, (7735), p. 291.
    66. 66)
      • 43. Dallard, P., Fitzpatrick, T., Flint, A., et al: ‘London millennium bridge: pedestrian-induced lateral vibration’, J. Bridge Eng., 2001, 6, (6), pp. 412417.
    67. 67)
      • 39. Liu, W., Stewart, C.N.: ‘Plant synthetic biology’, Trends Plant Sci., 2015, 20, (5), pp. 309317.
    68. 68)
      • 59. Hucka, M., Finney, A., Sauro, H.M., et al: ‘The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models’, Bioinformatics, 2003, 19, (4), pp. 524531.
    69. 69)
      • 50. Howison, J., Bullard, J.: ‘Software in the scientific literature: problems with seeing, finding, and using software mentioned in the biology literature’, J. Assoc. Inf. Sci. Technol., 2016, 67, (9), pp. 21372155.
    70. 70)
      • 42. Amman, O.H., von Kármán, T., Woodruff, G.B.: ‘The failure of the Tacoma Narrows bridge’, 1941.
    71. 71)
      • 3. Cameron, D.E., Bashor, C.J., Collins, J.J.: ‘A brief history of synthetic biology’, Nat. Rev. Microbiol., 2014, 12, (5), p. 381.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2019.0001
Loading

Related content

content/journals/10.1049/enb.2019.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address