Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Thermofluidic chip containing virtual thermal wells

The authors describe a thermofluidic chip on which microscale islands of controlled temperature are formed within an open fluidic environment. The chip forms part of the authors’ technology for thermally controlled DNA synthesis, whereby the site-specific temperature control enables site-specific addressability of chemical reactions, for example, related to the phosphoramidite cycle. Here, the authors discuss the principle of the chip, supporting the thermal well concept by means of simulations as well as by showing a prototype thermal array device.

References

    1. 1)
      • 6. Niklaus, F., Vieider, C., Jakobsen, H.: ‘MEMS-based uncooled infrared bolometer arrays – a review’, Proc. SPIE, 2007, 6836, pp. 68360D-168360D-15.
    2. 2)
      • 15. Zhang, C., Najafi, K.: ‘Fabrication of thick silicon dioxide layers for thermal isolation’, J. Micromech. Microeng., 2004, 14, pp. 769774.
    3. 3)
      • 13. Mansoor, M., Haneef, I., Akhtar, S., et al: ‘An SOI CMOS-based multi-sensor MEMS chip for fluidic application’, Sensors, 2016, 16, p. 1608.
    4. 4)
      • 7. Nguyen, N.T.: ‘Micromachined flow sensors – a review’, Flow Meas. Instrum., 1997, 8, (1), pp. 716.
    5. 5)
      • 3. Yang, H., Choi, C.A., Chung, K.H., et al: ‘An independent, temperature-controllable microelectrode array’, Anal. Chem., 2004, 76, pp. 15371543.
    6. 6)
      • 5. Palluk, S., Arlow, D.H., de Rond, T., et al: ‘De novo DNA synthesis using polymerase-nucleotide conjugates’, Nat. Biotechnol., 2018, 36, pp. 645650.
    7. 7)
      • 2. Kajiyama, T., Miyahara, Y., Kricka, L.J., et al: ‘Genotyping on a thermal gradient DNA chip’, Genome Res., 2003, 13, pp. 467475.
    8. 8)
      • 10. Semancik, S., Cavicchi, R.E., Wheeler, M.C., et al: ‘Microhotplate platforms for chemical sensor research’, Sens. Actuators B, 2001, 77, pp. 579591.
    9. 9)
      • 16. Jiang, H., Yoo, K., Yeh, J.-L.A., et al: ‘Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate’, J. Micromech. Microeng., 2002, 12, pp. 8795.
    10. 10)
      • 8. van Oudheusden, B.W.: ‘Silicon thermal flow sensors’, Sens. Actuators A, 1992, 30, pp. 526.
    11. 11)
      • 1. Zhang, C., Xu, J., Ma, W., et al: ‘PCR microfluidic devices for DNA amplification’, Biotechnol. Adv., 2006, 4, pp. 243284.
    12. 12)
      • 12. Ali, S.Z., Udrea, F., Milne, W.I., et al: ‘Tungsten-based SOI microhotplates for smart gas sensors’, J. Microelectromech. Syst., 2008, 17, (6), pp. 14081417.
    13. 13)
      • 4. Beaucage, S.L., Caruthers, M.H.: ‘Deoxynucleoside phosphoramidites – a new class of key intermediates for deoxypolynucleotide synthesis’, Tetrahedron Lett., 1981, 22, (20), pp. 18591862.
    14. 14)
      • 11. Graf, M., Barrettino, D., Kirstein, K.-U., et al: ‘CMOS microhotplate sensor system for operating temperatures up to 500 C’, Sens. Actuators B, Chem., 2006, 117, pp. 346532.
    15. 15)
      • 9. Udrea, F., Gardner, J.W., Setiadi, D., et al: ‘Design and simulations of SOI CMOS micro-hotplate gas sensors’, Sens. Actuators B, 2001, 78, pp. 180190.
    16. 16)
      • 14. Tsamis, C., Nassiopoulou, A.G., Tserepi, A.: ‘Thermal properties of suspended porous silicon micro-hotplates for sensor applications’, Sens. Actuators B, 2003, 95, pp. 7882.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2018.5010
Loading

Related content

content/journals/10.1049/enb.2018.5010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address