Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Genome-scale model of C. autoethanogenum reveals optimal bioprocessconditions for high-value chemical production from carbon monoxide

Clostridium autoethanogenum is an industrial microbe used for thecommercial-scale production of ethanol from carbon monoxide. While significant progress has beenmade in the attempted diversification of this bioprocess, further improvements are desirable,particularly in the formation of the high-value platform chemicals such as 2,3-butanediol (2,3-BD).A new, experimentally parameterised genome-scale model of C. autoethanogenumpredicts dramatically increased 2,3-BD production under non-carbon-limited conditions whenthermodynamic constraints on hydrogen production are considered.

References

    1. 1)
      • 66. Holzhütter, H.G.:‘The principle of flux minimization and its application to estimate stationary fluxesin metabolic networks’, Eur. J. Biochem., 2004, 271, (14), pp. 29052922.
    2. 2)
      • 40. Schuchmann, K., Müller, V.:‘Autotrophy at the thermo dynamic limit of life: a model for energy conservation inacetogenic bacteria’, Nat. Rev. Microbiol., 2014, 12, (12), pp. 809821.
    3. 3)
      • 75. Levin, D.B., Pitt, L., Love, M.:‘Biohydrogen production: prospects and limitations to practicalapplication’, Int. J. Hydrog. Energy, 2004, 29, (2), pp. 173185.
    4. 4)
      • 44. Feist, A.M., Palsson, B.Ø.:‘The biomass objective function’, Curr. Opin.Microbiol., 2010, 13, (3), pp. 344349.
    5. 5)
      • 69. Machado, D., Andrejev, S., Tramontano, M., et al:‘Fast automated reconstruction of genome-scale metabolic models for microbial speciesand communities’, Nucleic Acids Res., 2018, 46, (15), pp. 75427553.
    6. 6)
      • 17. Marcellin, E., Behrendorff, J.B., Nagaraju, S., et al:‘Low carbon fuels and commodity chemicals from waste gases – systematic approach tounderstand energy metabolism in a model acetogen’, Green Chem., 2016, 18, pp. 30203028.
    7. 7)
      • 30. Caspi, R., Foerster, H., Fulcher, C.A., et al:‘The Meta-Cyc database of metabolic pathways and enzymes and the BioCyc collection ofpathway/genome databases’, Nucleic Acids Res., 2008, 36, (suppl 1), pp. D623D631.
    8. 8)
      • 7. Ljungdahl, L.G., Wood, H.G.:‘Incorporation of c14 from carbon dioxide into sugar phosphates, carboxylic acids,and amino acids by Clostridium thermoaceticum’, J.Bacteriol., 1965, 89, (4), pp. 10551064.
    9. 9)
      • 42. Blom, J., Albaum, S.P., Doppmeier, D., et al:‘EDGAR: a software framework for the comparative analysis of prokaryoticgenomes’, BMC Bioinformatics, 2009, 10, (1), p. 154.
    10. 10)
      • 38. Schuster, S., Hilgetag, C.:‘On elementary flux modes in biochemical reaction systems at steadystate’, J. Biol. Syst., 1994, 2,(2), pp. 165182.
    11. 11)
      • 14. Köpke, M., Mihalcea, C., Liew, F., et al:‘2, 3-Butanediol production by acetogenic bacteria, an alternative route to chemicalsynthesis, using industrial waste gas’, Appl. Environ. Microbiol., 2011, 77, (15), pp. 54675475.
    12. 12)
      • 54. Hempfling, W.P., Mainzer, S.E.:‘Effects of varying the carbon source limiting growth on yield and maintenancecharacteristics of Escherichia coli in continuous culture’, J. Bacteriol., 1975, 123, (3), pp. 10761087.
    13. 13)
      • 23. Johnson, M.J., Peterson, W.H., Fred, E.B.:‘Oxidation and reduction relations between substrate and products in theacetone-butyl alcohol fermentation’, J. Biol. Chem., 1931, 91, (2), pp. 569591.
    14. 14)
      • 36. Wang, S., Huang, H., Kahnt, J., et al:‘NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex withfor mate dehydrogenase in Clostridium autoethanogenum grown on CO’, J. Bacteriol., 2013, 195, (19), pp. 43734386.
    15. 15)
      • 15. Abrini, J., Naveau, H., Nyns, E.J.:‘Clostridium autoethanogenum, sp. nov., an anaerobic bacterium thatproduces ethanol from carbon monoxide’, Arch. Microbiol., 1994, 161, (4), pp. 345351.
    16. 16)
      • 50. Nagarajan, H., Sahin, M., Nogales, J., et al:‘Characterizing acetogenic metabolism using a genome-scale metabolic reconstructionof Clostridium ljungdahlii’, Microbial CellFactories, 2013, 12, (1), p. 1.
    17. 17)
      • 34. Poolman, M.G.:‘Scrumpy: metabolic modelling with Python’, IEE Proc. Syst.Biol., 2006, 153, (5), pp. 375378.
    18. 18)
      • 20. Valgepea, K., Loi, K.Q., Behrendorff, J.B., et al:‘Arginine deiminase pathway provides ATP and boosts growth of the gas-fermentingacetogen Clostridium autoethanogenum’, Metab.Eng., 2017, 41, pp. 202211.
    19. 19)
      • 63. Schellenberger, J., Que, R., Fleming, R.M., et al:‘Quantitative prediction of cellular metabolism with constraint-based models: theCOBRA toolbox v2. 0’, Nat. Protoc., 2011, 6, (9), pp. 12901307.
    20. 20)
      • 19. Valgepea, K., de Souza PintoLemgruber, R., Meaghan, K., et al:‘Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermentingacetogens’, Cell Syst., 2017, 4,(5), pp. 505515.e5.
    21. 21)
      • 43. Brown, S., SantaMaria, J.P.Jr., Walker, S.:‘Wall teichoic acids of Gram-positive bacteria’, Annu. Rev.Microbiol., 2013, 67, pp. 313336.
    22. 22)
      • 28. Köpke, M., Held, C., Hujer, S., et al:‘Clostridium ljungdahlii represents a microbial production platformbased on syngas’, Proc. Natl. Acad. Sci., 2010, 107, (29), pp. 1308713092.
    23. 23)
      • 65. Schuetz, R., Kuepfer, L., Sauer, U.:‘Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli’, Mol. Syst. Biol., 2007, 3, (1), p. 119.
    24. 24)
      • 56. Schuster, S., Fell, D.A., Dandekar, T.:‘A general definition of metabolic pathways useful for systematic organization andanalysis of complex metabolic networks’, Nat. Biotechnol., 2000, 18, (3), p. 326.
    25. 25)
      • 29. Schatschneider, S., Abdelrazig, S., Safo, L., et al:‘Quantitative isotope-dilution high-resolution-mass-spectrometry analysis of multipleintracellular metabolites in Clostridium autoethanogenum with uniformly 13C-labeled standards derived from Spirulina’, Anal.Chem., 2018, 90, (7), pp. 44704477.
    26. 26)
      • 49. Li, G.W., Burkhardt, D., Gross, C., et al:‘Quantifying absolute protein synthesis rates reveals principles underlyingallocation of cellular resources’, Cell, 2014, 157, (3), pp. 624635.
    27. 27)
      • 2. Pachauri, R.K., Allen, M.R., Barros, V.R., et al:‘Climate change 2014: synthesis report. Contribution of working groups I, II and III to thefifth assessment report of the intergovernmental panel on climate change’(IPCC, Switzerland, 2014).
    28. 28)
      • 58. Cuevas, D.A., Edirisinghe, J., Henry, C.S., et al:‘From DNA to FBA: how to build your own genome-scale metabolicmodel’, Front. Microbiol., 2016, 7,p. 907.
    29. 29)
      • 1. Armaroli, N., Balzani, V.: ‘The legacy of fossil fuels’, Chem. Asian J., 2011, 6, (3), pp. 768784.
    30. 30)
      • 41. Kracke, F., Virdis, B., Bernhardt, P.V., et al: ‘Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply’, Biotechnol. Biofuels, 2016, 9, (1), p. 249.
    31. 31)
      • 70. Cotter, J.L., Chinn, M.S., Grunden, A.M.: ‘Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells’, Bioprocess. Biosyst. Eng., 2009, 32, (3), pp. 369380.
    32. 32)
      • 33. Gevorgyan, A., Poolman, M.G., Fell, D.A.: ‘Detection of stoichiometric inconsistencies in biomolecular models’, Bioinformatics, 2008, 24, (19), pp. 22452251.
    33. 33)
      • 51. Milne, C.B., Eddy, J.A., Raju, R., et al: ‘Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052’, BMC Syst. Biol., 2011, 5, (1), p. 130.
    34. 34)
      • 57. Fell, D., Cornish-Bowden, A.: ‘Understanding the control of metabolism’, vol. 2, (Portland Press London, England, 1997).
    35. 35)
      • 66. Holzhütter, H.G.: ‘The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks’, Eur. J. Biochem., 2004, 271, (14), pp. 29052922.
    36. 36)
      • 25. Karp, P.D., Paley, S., Romero, P.: ‘The pathway tools software’, Bioinformatics, 2002, 18, (suppl 1), pp. S225S232.
    37. 37)
      • 14. Köpke, M., Mihalcea, C., Liew, F., et al: ‘2, 3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas’, Appl. Environ. Microbiol., 2011, 77, (15), pp. 54675475.
    38. 38)
      • 53. Oh, Y.K., Palsson, B.Ø., Park, S.M., et al: ‘Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high throughput phenotyping and gene essentiality data’, J. Biol. Chem., 2007, 282, (39), pp. 2879128799.
    39. 39)
      • 45. Pramanik, J., Keasling, J.: ‘Stoichiometric model of Escherichia coli metabolism: incorporation of growth rate dependent biomass composition and mechanistic energy requirements’, Biotechnol. Bioeng., 1997, 56, (4), pp. 398421.
    40. 40)
      • 69. Machado, D., Andrejev, S., Tramontano, M., et al: ‘Fast automated reconstruction of genome-scale metabolic models for microbial species and communities’, Nucleic Acids Res., 2018, 46, (15), pp. 75427553.
    41. 41)
      • 44. Feist, A.M., Palsson, B.Ø.: ‘The biomass objective function’, Curr. Opin. Microbiol., 2010, 13, (3), pp. 344349.
    42. 42)
      • 52. Bainotti, A., Nishio, N.: ‘Growth kinetics of Acetobacterium sp. on methanol-formate in continuous culture’, J. Appl. Microbiol., 2000, 88, (2), pp. 191201.
    43. 43)
      • 37. Schuster, S., Dandekar, T., Fell, D.A.: ‘Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering’, Trends Biotechnol., 1999, 17, (2), pp. 5360.
    44. 44)
      • 43. Brown, S., Santa Maria, J.P.Jr., Walker, S.: ‘Wall teichoic acids of Gram-positive bacteria’, Annu. Rev. Microbiol., 2013, 67, pp. 313336.
    45. 45)
      • 27. Bruno-Barcena, J.M., Chinn, M.S., Grunden, A.M.: ‘Genome sequence of the autotrophic acetogen Clostridium autoethanogenum JA1-1 strain DSM 10061, a producer of ethanol from carbon monoxide’, Genome Announcements, 2013, 1, (4), pp. e0062813.
    46. 46)
      • 18. Oberhardt, M.A., Palsson, B.Ø., Papin, J.A.: ‘Applications of genome-scale metabolic reconstructions’, Mol. Syst. Biol., 2009, 5, (1), p. 320.
    47. 47)
      • 67. Holzhütter, H.G.: ‘The generalized flux-minimization method and its application to metabolic networks affected by enzyme deficiencies’, Biosystems, 2006, 83, (2–3), pp. 98107.
    48. 48)
      • 11. Biegel, E., Schmidt, S., González, J.M., et al: ‘Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes’, Cell. Mol. Life Sci., 2011, 68, (4), pp. 613634.
    49. 49)
      • 4. Heijstra, B.D., Leang, C., Juminaga, A.: ‘Gas fermentation: cellular engineering possibilities and scale up’, Microb. Cell Fact., 2017, 16, (1), p. 60.
    50. 50)
      • 54. Hempfling, W.P., Mainzer, S.E.: ‘Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture’, J. Bacteriol., 1975, 123, (3), pp. 10761087.
    51. 51)
      • 62. Strang, G.: ‘Linear algebra and its applications’ (Thomson Learning, Boston, MA, 1988).
    52. 52)
      • 68. Ebrahim, A., Lerman, J., Palsson, B., et al: ‘COBRApy: constraints-based reconstruction and analysis for Python’, BMC Syst. Biol., 2013, 7, (1), p. 74.
    53. 53)
      • 63. Schellenberger, J., Que, R., Fleming, R.M., et al: ‘Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2. 0’, Nat. Protoc., 2011, 6, (9), pp. 12901307.
    54. 54)
      • 51. Milne, C.B., Eddy, J.A., Raju, R., et al:‘Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052’, BMC Syst.Biol., 2011, 5, (1), p. 130.
    55. 55)
      • 64. Varma, A., Palsson, B.Ø.:‘Metabolic flux balancing: basic concepts, scientific and practicaluse’, Nat. Biotechnol., 1994, 12,(10), p. 994.
    56. 56)
      • 6. Liew, F., Martin, M.E., Tappel, R.C., et al:‘Gas fermentation – a flexible platform for commercial scale production of lowcarbon-fuels and chemicals from waste and renewable feedstocks’, Front.Microbiol., 2016, 7, p. 694.
    57. 57)
      • 76. LeNovère, N., Bornstein, B., Broicher, A., et al:‘Biomodels database: a free, centralized database of curated, published, quantitativekinetic models of biochemical and cellular systems’, Nucleic AcidsRes., 2006, 34, (suppl_1), pp. D689D691.
    58. 58)
      • 22. Humphreys, C.M., McLean, S., Schatschneider, S., et al:‘Whole genome sequence and manual annotation of Clostridiumautoethanogenum, an industrially relevant bacterium’, BMCGenomics, 2015, 16, (1), p. 1.
    59. 59)
      • 67. Holzhütter, H.G.:‘The generalized flux-minimization method and its application to metabolic networksaffected by enzyme deficiencies’, Biosystems, 2006, 83, (2–3), pp. 98107.
    60. 60)
      • 24. Brown, S.D., Nagaraju, S., Utturkar, S., et al:‘Comparison of single molecule sequencing and hybrid approaches for finishing thegenome of Clostridium autoethanogenum and analysis of CRISPR systems in industrialrelevant Clostridia’, Biotechnol. Biofuels, 2014, 7, (1), p. 40.
    61. 61)
      • 73. Angenent, L.T., Karim, K., Al-Dahhan, M.H., et al:‘Production of bioenergy and biochemicals from industrial and agriculturalwastewater’, Trends Biotechnol., 2004, 22, (9), pp. 477485.
    62. 62)
      • 11. Biegel, E., Schmidt, S., González, J.M., et al:‘Biochemistry, evolution and physiological function of the Rnf complex, a novelion-motive electron transport complex in prokaryotes’, Cell. Mol. LifeSci., 2011, 68, (4), pp. 613634.
    63. 63)
      • 12. Yoshida, M., Muneyuki, E., Hisabori, T.:‘ATP synthase – a marvellous rotary engine of the cell’, Nat.Rev. Mol. Cell Biol., 2001, 2, (9), p. 669.
    64. 64)
      • 21. Dash, S., Ng, C.Y., Maranas, C.D.:‘Metabolic modeling of Clostridia: current developments andapplications’, FEMS Microbiol. Lett., 2016, 363, (4), p. fnw004.
    65. 65)
      • 37. Schuster, S., Dandekar, T., Fell, D.A.:‘Detection of elementary flux modes in biochemical networks: a promising tool forpathway analysis and metabolic engineering’, Trends Biotechnol., 1999, 17, (2), pp. 5360.
    66. 66)
      • 39. Meier, T., Ferguson, S.A., Cook, G.M., et al:‘Structural investigations of the membrane-embedded rotor ring of theF1Fo-ATPase from Clostridium paradoxum’, J. Bacteriol., 2006, 188, (22), pp. 77597764.
    67. 67)
      • 74. Claassen, P., Van Lier, J., Contreras, A.L., et al: ‘Utilisation of biomass for the supply of energy carriers’, Appl. Microbiol. Biotechnol., 1999, 52, (6), pp. 741755.
    68. 68)
      • 59. Hartman, H.B.: ‘Genome-scale metabolic modelling of Salmonella and Lactococcus species’. PhD thesis, Oxford Brookes University, 2013.
    69. 69)
      • 39. Meier, T., Ferguson, S.A., Cook, G.M., et al: ‘Structural investigations of the membrane-embedded rotor ring of the F1Fo-ATPase from Clostridium paradoxum’, J. Bacteriol., 2006, 188, (22), pp. 77597764.
    70. 70)
      • 36. Wang, S., Huang, H., Kahnt, J., et al: ‘NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with for mate dehydrogenase in Clostridium autoethanogenum grown on CO’, J. Bacteriol., 2013, 195, (19), pp. 43734386.
    71. 71)
      • 30. Caspi, R., Foerster, H., Fulcher, C.A., et al: ‘The Meta-Cyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases’, Nucleic Acids Res., 2008, 36, (suppl 1), pp. D623D631.
    72. 72)
      • 60. Pfeiffer, T., Sánchez-Valdenebro, I., Nuño, J., et al: ‘METATOOL: for studying metabolic networks’, Bioinformatics, 1999, 15, (3), pp. 251257.
    73. 73)
      • 71. Breitkopf, R.: ‘Understanding the C4 dicarboxylic acid metabolism in Clostridium autoethanogenum’. PhD thesis, University of Nottingham, 2018.
    74. 74)
      • 38. Schuster, S., Hilgetag, C.: ‘On elementary flux modes in biochemical reaction systems at steady state’, J. Biol. Syst., 1994, 2, (2), pp. 165182.
    75. 75)
      • 26. http://sbrc-seek.nottingham.ac.uk/data_files/1?version=1.
    76. 76)
      • 22. Humphreys, C.M., McLean, S., Schatschneider, S., et al: ‘Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium’, BMC Genomics, 2015, 16, (1), p. 1.
    77. 77)
      • 49. Li, G.W., Burkhardt, D., Gross, C., et al: ‘Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources’, Cell, 2014, 157, (3), pp. 624635.
    78. 78)
      • 40. Schuchmann, K., Müller, V.: ‘Autotrophy at the thermo dynamic limit of life: a model for energy conservation in acetogenic bacteria’, Nat. Rev. Microbiol., 2014, 12, (12), pp. 809821.
    79. 79)
      • 3. Doran, P.M.: ‘Bioprocess engineering principles’ (Academic Press, Waltham, MA, 1995).
    80. 80)
      • 76. Le Novère, N., Bornstein, B., Broicher, A., et al: ‘Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems’, Nucleic Acids Res., 2006, 34, (suppl_1), pp. D689D691.
    81. 81)
      • 15. Abrini, J., Naveau, H., Nyns, E.J.: ‘Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide’, Arch. Microbiol., 1994, 161, (4), pp. 345351.
    82. 82)
      • 47. Senger, R.S., Papoutsakis, E.T.: ‘Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis’, Biotechnol. Bioeng., 2008, 101, (5), pp. 10531071.
    83. 83)
      • 34. Poolman, M.G.: ‘Scrumpy: metabolic modelling with Python’, IEE Proc. Syst. Biol., 2006, 153, (5), pp. 375378.
    84. 84)
      • 20. Valgepea, K., Loi, K.Q., Behrendorff, J.B., et al: ‘Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum’, Metab. Eng., 2017, 41, pp. 202211.
    85. 85)
      • 9. Ragsdale, S.W., Pierce, E.: ‘Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation’, Biochim. Biophys. Acta Proteins Proteomics, 2008, 1784, (12), pp. 18731898.
    86. 86)
      • 8. Ljungdahl, L.G., Wood, H.G.: ‘Total synthesis of acetate from CO2 by heterotrophic bacteria’, Annu. Rev. Microbiol., 1969, 23, (1), pp. 515538.
    87. 87)
      • 2. Pachauri, R.K., Allen, M.R., Barros, V.R., et al: ‘Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change’ (IPCC, Switzerland, 2014).
    88. 88)
      • 19. Valgepea, K., de Souza Pinto Lemgruber, R., Meaghan, K., et al: ‘Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens’, Cell Syst., 2017, 4, (5), pp. 505515.e5.
    89. 89)
      • 72. Valgepea, K., Lemgruber, R.S.P., Abdalla, T., et al: ‘H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum’, Biotechnol. Biofuels, 2018, 11, (1), p. 55.
    90. 90)
      • 16. Henstra, A.M., Sipma, J., Rinzema, A., et al: ‘Microbiology of synthesis gas fermentation for biofuel production’, Curr. Opin. Biotechnol., 2007, 18, (3), pp. 200206.
    91. 91)
      • 73. Angenent, L.T., Karim, K., Al-Dahhan, M.H., et al: ‘Production of bioenergy and biochemicals from industrial and agricultural wastewater’, Trends Biotechnol., 2004, 22, (9), pp. 477485.
    92. 92)
      • 35. Mock, J., Zheng, Y., Mueller, A.P., et al: ‘Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation’, J. Bacteriol., 2015, 197, (18), pp. 29652980.
    93. 93)
      • 21. Dash, S., Ng, C.Y., Maranas, C.D.: ‘Metabolic modeling of Clostridia: current developments and applications’, FEMS Microbiol. Lett., 2016, 363, (4), p. fnw004.
    94. 94)
      • 46. Lee, J., Yun, H., Feist, A.M., et al: ‘Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network’, Appl. Microbiol. Biotechnol., 2008, 80, (5), pp. 849862.
    95. 95)
      • 64. Varma, A., Palsson, B.Ø.: ‘Metabolic flux balancing: basic concepts, scientific and practical use’, Nat. Biotechnol., 1994, 12, (10), p. 994.
    96. 96)
      • 13. Reidlinger, J., Müller, V.: ‘Purification of ATP synthase from Acetobacterium woodii and identification as a na+-translocating f1fo-type enzyme’, Eur. J. Biochem., 1994, 223, (1), pp. 275283.
    97. 97)
      • 31. Fell, D.A., Poolman, M.G., Gevorgyan, A.: ‘Building and analysing genome-scale metabolic models’, Biochem. Soc. Trans., 2010, 38, (5), pp. 11971201.
    98. 98)
      • 32. Hartman, H.B., Fell, D.A., Rossell, S., et al: ‘Identification of potential drug targets in Salmonella enterica sv. typhimurium using metabolic modelling and experimental validation’, Microbiology, 2014, 160, (6), pp. 12521266.
    99. 99)
      • 58. Cuevas, D.A., Edirisinghe, J., Henry, C.S., et al: ‘From DNA to FBA: how to build your own genome-scale metabolic model’, Front. Microbiol., 2016, 7, p. 907.
    100. 100)
      • 42. Blom, J., Albaum, S.P., Doppmeier, D., et al: ‘EDGAR: a software framework for the comparative analysis of prokaryotic genomes’, BMC Bioinformatics, 2009, 10, (1), p. 154.
    101. 101)
      • 48. Senger, R.S., Papoutsakis, E.T.: ‘Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems’, Biotechnol. Bioeng., 2008, 101, (5), pp. 10531071.
    102. 102)
      • 10. Schiel-Bengelsdorf, B., Dürre, P.: ‘Pathway engineering and synthetic biology using acetogens’, FEBS Lett., 2012, 586, (15), pp. 21912198.
    103. 103)
      • 5. Norman, R.O., Millat, T., Winzer, K., et al: ‘Progress towards platform chemical production using Clostridium autoethanogenum’, Biochem. Soc. Trans., 2018, 46, (3), pp. 523535.
    104. 104)
      • 17. Marcellin, E., Behrendorff, J.B., Nagaraju, S., et al: ‘Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen’, Green Chem., 2016, 18, pp. 30203028.
    105. 105)
      • 29. Schatschneider, S., Abdelrazig, S., Safo, L., et al: ‘Quantitative isotope-dilution high-resolution-mass-spectrometry analysis of multiple intracellular metabolites in Clostridium autoethanogenum with uniformly 13C-labeled standards derived from Spirulina’, Anal. Chem., 2018, 90, (7), pp. 44704477.
    106. 106)
      • 56. Schuster, S., Fell, D.A., Dandekar, T.: ‘A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks’, Nat. Biotechnol., 2000, 18, (3), p. 326.
    107. 107)
      • 6. Liew, F., Martin, M.E., Tappel, R.C., et al: ‘Gas fermentation – a flexible platform for commercial scale production of low carbon-fuels and chemicals from waste and renewable feedstocks’, Front. Microbiol., 2016, 7, p. 694.
    108. 108)
      • 55. Verduyn, C., Postma, E., Scheffers, W.A., et al: ‘Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures’, Microbiology, 1990, 136, (3), pp. 405412.
    109. 109)
      • 65. Schuetz, R., Kuepfer, L., Sauer, U.: ‘Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli’, Mol. Syst. Biol., 2007, 3, (1), p. 119.
    110. 110)
      • 23. Johnson, M.J., Peterson, W.H., Fred, E.B.: ‘Oxidation and reduction relations between substrate and products in the acetone-butyl alcohol fermentation’, J. Biol. Chem., 1931, 91, (2), pp. 569591.
    111. 111)
      • 75. Levin, D.B., Pitt, L., Love, M.: ‘Biohydrogen production: prospects and limitations to practical application’, Int. J. Hydrog. Energy, 2004, 29, (2), pp. 173185.
    112. 112)
      • 50. Nagarajan, H., Sahin, M., Nogales, J., et al: ‘Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii’, Microbial Cell Factories, 2013, 12, (1), p. 1.
    113. 113)
      • 28. Köpke, M., Held, C., Hujer, S., et al: ‘Clostridium ljungdahlii represents a microbial production platform based on syngas’, Proc. Natl. Acad. Sci., 2010, 107, (29), pp. 1308713092.
    114. 114)
      • 7. Ljungdahl, L.G., Wood, H.G.: ‘Incorporation of c14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum’, J. Bacteriol., 1965, 89, (4), pp. 10551064.
    115. 115)
      • 12. Yoshida, M., Muneyuki, E., Hisabori, T.: ‘ATP synthase – a marvellous rotary engine of the cell’, Nat. Rev. Mol. Cell Biol., 2001, 2, (9), p. 669.
    116. 116)
      • 61. Palsson, B.Ø.: ‘Systems biology: properties of reconstructed networks’ (Cambridge University Press, New York, NY, 2006).
    117. 117)
      • 24. Brown, S.D., Nagaraju, S., Utturkar, S., et al: ‘Comparison of single molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia’, Biotechnol. Biofuels, 2014, 7, (1), p. 40.
http://iet.metastore.ingenta.com/content/journals/10.1049/enb.2018.5003
Loading

Related content

content/journals/10.1049/enb.2018.5003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address