Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Ultra-high efficiency solar cells: the path for mass penetration of solar electricity

Ultra-high efficiency solar cells: the path for mass penetration of solar electricity

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For achieving a photovoltaic penetration above one-third of the world demand for electricity in the first half of this century, the importance of a fast manufacturing learning curve that is linked to the capacity of developing cells of increasing efficiency is stressed. Progress in multijunction cells is described as well as three novel concepts promising very high efficiency. It is explained why these concepts will probably be used in concentrator systems.

References

    1. 1)
      • W. Shockley . The theory of p-n junctions in Semiconductors and p-n junction transistors. Bell Syst. Tech. J. , 435 - 489
    2. 2)
      • Luque, A., Martí, A.: `European initiatives on future photovoltaic technologies', Proc. 21th European Photovoltaic Solar Energy Conf., 2006, Dresden, Germany, WIP, p. 1–9.
    3. 3)
    4. 4)
    5. 5)
      • Antolín, E., Martí, A., Luque, A.: `Energy conversion efficiency limit of series connected intermediate band solar cells', Proc. 21st European Photovoltaic Solar Energy Conf., 2006, WIP-Renewable Energies, p. 412–415.
    6. 6)
    7. 7)
    8. 8)
      • A. Luque . Photovoltaic markets and costs forecast based on a demand elasticity model. Prog. Photovolt. Res. Appl. , 303 - 312
    9. 9)
      • Lewis, N.S., Crabtree, G., Nozik, A.J., Wasielewski, M.R. and Alivisatos, P.: ‘Basic research needs for solar energy utilization,’ US Department of Energy, Office of Basic Science, 2005.
    10. 10)
    11. 11)
    12. 12)
      • R.R. King , D.C. Law , K.M. Edmondson , C.M. Fetzer , G.S. Kinsey , H. Yoon , R.A. Sherif , N.H. Karam . 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett.
    13. 13)
    14. 14)
      • S. Kodolinski , J.H. Werner , T. Wittchen , H.J. Queisser . Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett.
    15. 15)
      • M.A. Green . (2005) Third generation photovoltaics.
    16. 16)
      • Maycock, P., PV News, 2005.
    17. 17)
      • Barnett, A., Kirkpatrick, D., Honsberg, C.B., Moore, D., Wanlass, M., Emery, K., Schwartz, R., Carlson, D., Bowden, S., Aiken, D., Gray, A., Kurtz, S., Kazmerski, L., Moriarty, T., Steiner, M., Gray, J., Davenport, T., Buelow, R., Takacs, L., Shatz, N., Bortz, J., Jani, O., Goossen, K., Kiamilev, F., Doolittle, A., Ferguson, I., Unger, B., Schmidt, G., Christensen, E., Salzman, D.: `Milestones toward 50% efficient solar cell modules', Proc. 22nd European Photovoltaic Solar Energy Conf., 2007, Milan, Itlay, p. 95–100.
    18. 18)
      • T.B. Johansson , H. Kelly , A.K.N. Reddy , R.H. Williams , L. Burnham . (1993) Renewable energy sources for fuel and electricity.
    19. 19)
      • A. Martí , A. Luque . (2004) Next generation photovoltaics: high efficiency through full spectrum utilization.
    20. 20)
      • W. Shockley , H.J. Queisser . Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. , 510 - 519
    21. 21)
      • A. Luque , A. Martí , A. Luque , S. Hegedus . (2003) Theoretical limits of photovoltaic energy conversion, Handbook of photovoltaic science and engineering.
    22. 22)
    23. 23)
    24. 24)
      • B. Mahon , L. Gerhardy . (2005) Q4 global technology data book.
    25. 25)
    26. 26)
      • M. Yamaguchi , A. Luque . High efficiency and high concentration in photovoltaics. IEEE Trans. Electron Devices , 2139 - 2144
    27. 27)
      • A. Jabarah , L.T. Gilead , A. Zlotogorski , P. Wurfel . Solar energy conversion with hot electrons from impact ionisation. Sol. Energy Mater. Sol. Cells , 43 - 52
    28. 28)
    29. 29)
      • G.L. Araujo , A. Martí . Absolute limiting efficiencies for photovoltaic energy conversion. Sol. Energy Mater. Sol. Cells , 213 - 240
    30. 30)
      • A. Luque , G. Sala , G.L. Araujo , T. Bruton . Cost reducing potential of photovoltaic concentration. Int. J. Sustainable Energy , 179 - 198
    31. 31)
      • W.P. Hirshman , G. Herring , M. Schmela . Cell and module production 2007. Photon Int. , 140 - 174
http://iet.metastore.ingenta.com/content/journals/10.1049/el_20081154
Loading

Related content

content/journals/10.1049/el_20081154
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address