Thermal noise and bit error rate limits in nanoscale memories

Access Full Text

Thermal noise and bit error rate limits in nanoscale memories

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Analysis of the effects of thermal noise in nanoscale memories is presented. A theoretical analysis of thermal noise is used to predict the number of bit errors per year caused by thermal noise.

Inspec keywords: integrated circuit noise; thermal noise; nanoelectronics; integrated memory circuits; error statistics

Other keywords: BER; bit error rate limits; thermal noise; nanoscale memories

Subjects: Memory circuits; Semiconductor integrated circuits; Semiconductor storage

References

    1. 1)
      • She, M., King, Y.-C., King, T.-J., Hu, C.: `Modeling and design study of nanocrystal memory devices', Abst. IEEE Device Research Conf., 2001, Notre Dame, IN, USA, p. 139–140.
    2. 2)
      • S.O. Rice . The mathematical analysis of random noise. Bell Syst. Tech. J. , 46 - 156
    3. 3)
    4. 4)
      • Muralidhar, R.: `A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory', IEDM Dig., 2003, p. 601–604.
    5. 5)
      • Hradsky, B., Muralidhar, R., Rao, R.A., Steimle, B., Straub, S., White, B.E., Sadd, M., Anderson, S.G.H., Yater, J.A., Swift, C.T., Acred, B., Peschke, J., Prinz, E.J., Chang, K.M.: `Nanocrystal physical attributes influencing non-volatile memory performance', Abst. IEEE Device Research Conf., 2005, Santa Barbara, CA, USA, p. 37–38.
    6. 6)
      • D.A. Johns , K. Martin . (1997) Analog integrated circuit design.
    7. 7)
      • T.G.M. Kleinpenning . On low-frequency noise in tunneling diodes. Solid-State Electron. , 927 - 931
    8. 8)
      • S.O. Rice . The mathematical analysis of random noise. Bell Syst. Tech. J. , 282 - 332
    9. 9)
http://iet.metastore.ingenta.com/content/journals/10.1049/el_20063803
Loading

Related content

content/journals/10.1049/el_20063803
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading