Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy

Access Full Text

Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Low threshold current density GaAsSb/GaAs quantum well lasers were grown on GaAs substrate using solid source molecular beam epitaxy. The laser emits 1.28 µm light output and demonstrates a very low threshold current density of 210 A/cm2.

Inspec keywords: quantum well lasers; semiconductor growth; Debye temperature; III-V semiconductors; gallium arsenide; molecular beam epitaxial growth

Other keywords: cavity length dependence; GaAsSb-GaAs; quantum well lasers; characteristic temperature; double quantum well; low-threshold current lasers; solid source molecular beam epitaxy; 1.28 micron; pulsed mode; inverse external quantum efficiency

Subjects: Semiconductor lasers; Vacuum deposition; Vacuum deposition; Lasing action in semiconductors

References

    1. 1)
      • W.W. Chow , H.C. Schneider . Charge-separation effects in 1.3 µm GaAsSb type-II quantum-well laser gain. Appl. Phys. Lett. , 4100 - 4102
    2. 2)
    3. 3)
      • Q. Xie , J.E. Van Nostrand , R.L. Jones , J. Sizelove , D.C. Look . Electrical and optical properties of undoped GaSb grown by molecular beam epitaxy using cracked Sb1 and Sb2. J. Cryst. Growth , 255 - 265
    4. 4)
      • F. Quochi , D.C. Kliper , J.E. Cunningham , M. Dinu , J. Snah . Continuous-wave operation of 1.3 µm GaAsSb–GaAs quantum-well vertical-cavity surface-emitting laser at room temperature. IEEE Photonics Technol. Lett. , 921 - 923
    5. 5)
      • G. Liu , S.L. Chuang , S.H. Park . Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach. J. Appl. Phys. , 5554 - 5561
    6. 6)
      • N. Tansu , J.L. Mawst . Low-threshold strain-compensated InGaAs(N) (λ=1.19–1.31 µm) quantum-well lasers. IEEE Photonics Technol. Lett. , 444 - 446
    7. 7)
      • M. Yamada , T. Anan , K. Tokutome , A. Kamei , K. Nishi , S. Sugou . Low-threshold operation of 1.3 µm GaAsSb quantum-well lasers directly grown on GaAs substrates. IEEE Photonics Technol. Lett. , 774 - 776
    8. 8)
      • Y. Qiu , P. Gogna , S. Forouhar , A. Stintz , L.F. Lester . High-performance InAs quantum-dot lasers near 1.3 µm. Appl. Phys. Lett. , 3570 - 3572
http://iet.metastore.ingenta.com/content/journals/10.1049/el_20020932
Loading

Related content

content/journals/10.1049/el_20020932
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading