Scaling of piezoelectric properties in nanometre to micrometre scale

Access Full Text

Scaling of piezoelectric properties in nanometre to micrometre scale

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Measurements of piezoelectric response have been performed using atomic force microscopy (AFM) on sol-gel produced lead-zirconate-titanate (PZT) thin films, upon which nanometre- to micrometre-scale electrodes have been patterned. It is found that the magnitude of the piezoelectric response as a function of the electrode size in the range from a few nanometres up to 6 µm can be described accurately in terms of the fringing of the electric field around the electrode edges.

Inspec keywords: ferroelectric thin films; atomic force microscopy; lead compounds; sol-gel processing; electrodes; ferroelectric storage

Other keywords: fringing; sol-gel process; electric field; PbZrO3TiO3; nanometre-scale electrodes; electrode size; ferroelectric thin films; micrometre-scale electrodes; atomic force microscopy; piezoelectric properties; PZT

Subjects: Deposition from liquid phases; Piezoelectric and ferroelectric materials; Ferroelectric devices; Memory circuits

References

    1. 1)
      • C.A. Paz de Araujo , J.D. Cuchiaro , L.D. McMillan , M.C. Scoff , J.F. Scoff . Fatigue-free ferroelectric capacitors with platinum electrodes. Nature
    2. 2)
      • G. Binning , F. Quate , C. Gerber . Atomic force microscope. Phys. Rev. Lett. , 9 , 930 - 933
    3. 3)
      • J.A. Christman , R.R. Woolcott , A.I. Kingon , R.J. Nemanich . Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. , 26 , 3851 - 3853
    4. 4)
      • C.S. Ganpule , A. Stanishevsky , Q. Su , S. Aggarwal , J. Melngaillis , E. Williams , R. Ramesh . Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. , 3 , 409 - 411
    5. 5)
      • G. Zavala , J.H. Fendler , S. Trolier-McKinstry . Characterization of ferroelectric lead zirconate titanate films by scanningforce microscopy. J. Appl. Phys. , 11 , 2480 - 2491
    6. 6)
      • C. Durkan , M.E. Welland , D.P. Chu , P. Migliorato . Probing domains at the nanometer scale in piezoelectric thin films. Phys. Rev. B. , 23 , 16198 - 16204
    7. 7)
      • O. Kolosov , A. Gruverman , J. Hatano , K. Takahashi , H. Tokumoto . Nanoscale visualization and control of ferroelectric domains by atomicforce microscopy. Phys. Rev. Lett. , 21 , 4309 - 4312
    8. 8)
      • C.R. Paul , S.A. Nasar . (1987) Introduction to electromagnetic fields.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_20000291
Loading

Related content

content/journals/10.1049/el_20000291
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading