Quantitative analysis of Si/GexSi1–x/Si heterojunction bipolar transistors with linearly graded Ge profile

Access Full Text

Quantitative analysis of Si/GexSi1–x/Si heterojunction bipolar transistors with linearly graded Ge profile

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new experimental methodology for the analysis of Si/GexSi1–x/Si HBT yields quantitative values for the important transistor parameters, such as the energy gap reduction and the built-in electric field due to Ge, and the minority-carrier base diffusion length, lifetime and transit time. The method also enables a charge-control analysis of the base current to be made. A demonstration is presented for a GeSi heterojunction bipolar transistor with a linearly graded Ge profile in the base. The methodology can be extended for arbitrary material composition and doping profile in the base.

Inspec keywords: carrier lifetime; semiconductor materials; heterojunction bipolar transistors; silicon; minority carriers; Ge-Si alloys; doping profiles; elemental semiconductors

Other keywords: built-in electric field; transistor parameters; minority-carrier transit time; energy gap reduction; linearly graded profile; arbitrary material composition; Si-GeSi-Si; heterojunction bipolar transistors; arbitrary doping profile; minority-carrier base diffusion length; minority-carrier lifetime; charge-control analysis

Subjects: Semiconductor doping; Bipolar transistors

References

    1. 1)
      • G. Li , A. Neugroschel , C.-T. Sah . To be published.
    2. 2)
      • A. Neugroschel , C.-T. Sah , J.M. Ford , J. Steele , R. Tang , C. Stein , P. Welch , J. Watanabe . Performance comparison analysis of GeSi and Si bipolar transistors. Electron. Lett. , 6 , 1239 - 1241
    3. 3)
      • A. Neugroschel . Emitter injection efficiency in heterojunction bipolar transistors. Solid-State Electron. , 11 , 1171 - 1173
    4. 4)
      • Tang, Y.T., Hamel, J.S.: `An experimental method for simultaneous extraction of parasitic potentialbarrier heights at emitter-base and collector-base junctions of SiGe HBTs', ESSDERC Proc., 1998, p. 96–99.
    5. 5)
      • A. Neugroschel , C.-T. Sah . Measurement of built-in electric field in base of Si/GexSi1-x/SiHBT with linearly-graded Ge profile. Electron. Lett. , 11 , 2280 - 2282
    6. 6)
      • H. Kroemer . Two integral relations pertaining to the electron transport through abipolar transistor with a nonuniform energy gap in the base region. Solid-State Electron. , 11 , 1101 - 1103
    7. 7)
      • G.L. Patton , D.L. Harame , J.M.C. Stork , B.S. Meyerson , G.L. Scilla , B. Ganin . Graded-SiGe-base, poly-emitter heterojunction bipolar transistors. IEEE Electron Dev. Lett. , 12 , 534 - 536
    8. 8)
      • A. Neugroschel . Determination of lifetimes and recombination currents in p-njunction solar cells, diodes, and transistors. IEEE Trans. , 1 , 108 - 115
    9. 9)
      • R. Tang , J. Ford , B. Pryor , S. Anandakugan , P. Welch , C. Burt . Extrinsic base optimization for high-performance rf SiGe heterojunctionbipolar transistors. IEEE Electron Device Lett. , 9 , 426 - 428
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19990607
Loading

Related content

content/journals/10.1049/el_19990607
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading