Near-infrared microcavities confined by two-dimensional photonic bandgap crystals

Access Full Text

Near-infrared microcavities confined by two-dimensional photonic bandgap crystals

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Measurements are presented of hexagonal cavities confined by 2D photonic bandgap boundaries etched in an AlGaAs laser-like waveguide heterostructure. The nominal cavity volumes vary between 0.6 and 1.9 µm3. The photoluminescence of quantum dots embedded in the heterostructure directly probes the cavity horizontal modes and resonances and quality factors of Q ≃ 1000 are observed.

Inspec keywords: optical resonators; gallium arsenide; aluminium compounds; III-V semiconductors; optical waveguides; Q-factor; photoluminescence; semiconductor heterojunctions; semiconductor quantum dots; photonic band gap

Other keywords: AlGaAs waveguide heterostructure; resonance; quantum dot; two-dimensional photonic bandgap crystal; quality factor; near-infrared microcavity; photoluminescence; AlGaAs; hexagonal cavity; horizontal mode

Subjects: Optical waveguides; Impurity and defect levels in II-VI and III-V semiconductors; Photonic bandgap materials; Optical waveguides and couplers; Luminescent materials

References

    1. 1)
      • H. Yokoyama . Physics and device applications of optical microcavities. Science , 66 - 70
    2. 2)
      • E.M. Purcell . Spontaneous emission probabilities at radiofrequencies. Phys. Rev.
    3. 3)
      • T.F. Krauss , C.J.M. Smith , B. Vogele , S.K. Murad , C.D.W. Wilkinson , R.S. Grant , M.G. Burt , R.M. De La Rue . Two-dimensional waveguide based photonic microstructures in GaAs andInP. Microelectron. Eng. , 29 - 32
    4. 4)
      • H. Benisty . Modal-analysis of optical guides with 2-dimensional photonic band-gapboundaries. J. Appl. Phys. , 10 , 7483 - 7492
    5. 5)
      • D. Labilloy , H. Benisty , C. Weisbuch , T.F. Krauss , C.J.M. Smith , R. Houdré , U. Oesterle . High-finesse disk microcavity based on a circular Bragg reflector. Appl. Phys. Lett. , 10 , 1314 - 1316
    6. 6)
      • C.J.M. Smith , T.F. Krauss , R.M. De La Rue , D. Labilloy , H. Benisty , C. Weisbuch , U. Oesterle , R. Houdré . In-plane microcavity resonators with two dimensional photonic bandgapmirrors. to be published in IEE Proc. J - Optoelectron.
    7. 7)
      • J.M. Gérard , B. Sermage , B. Gayral , B. Legrand , E. Costard , V. Thierry Mieg . Enhanced spontaneous emission by quantum boxes in a monolithic opticalmicrocavity. Phys. Rev. Lett. , 5 , 1110 - 1113
    8. 8)
      • S.L. McCall , A.F.J. Levi , R.E. Slusher , S.J. Pearton , R.A. Logan . Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. , 3 , 289 - 291
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19990157
Loading

Related content

content/journals/10.1049/el_19990157
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading