Bandgap tuning of In0.53Ga0.47As/InP multiquantum well structure by impurity free vacancy diffusion using In0.53Ga0.47As cap layer and SiO2 dielectric capping

Access Full Text

Bandgap tuning of In0.53Ga0.47As/InP multiquantum well structure by impurity free vacancy diffusion using In0.53Ga0.47As cap layer and SiO2 dielectric capping

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

SiO2 has been successfully used as the dielectric capping material for bandgap tuning in InGaAs/InP MQW for the first time where the InGaAs cap layer is used simultaneously. The samples showed large blue shifts of bandgap energy after RTA treatment (185 and 230 meV at 750 and 850°C, respectively). Samples with SiO2-InP or SiNx-InGaAs cap layer combinations did not show significant energy shifts.

Inspec keywords: III-V semiconductors; rapid thermal annealing; indium compounds; gallium arsenide; semiconductor quantum wells; diffusion; energy gap; semiconductor doping

Other keywords: multiquantum well structure; SiN-InGaAs; RTA treatment; 850 degC; bandgap energy; 750 degC; energy shifts; SiO2-InP; bandgap tuning; cap layer; 230 meV; In0.53Ga0.47As-InP; impurity free vacancy diffusion; 185 meV; dielectric capping; SiO2

Subjects: Diffusion, migration, and displacement of impurities in solids; Semiconductor doping; Electrical properties of semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions; Annealing processes in semiconductor technology; Semiconductor superlattices, quantum wells and related structures; Doping and implantation of impurities; Annealing processes; II-VI and III-V semiconductors; Electron states in low-dimensional structures

References

    1. 1)
      • J.Z. Wan , D.A. Thompson , J.G. Simmons . Ion implantation inducedcompositional intermixing in the InGaAs/InP MQW system for wavelength shiftedwaveguides. Nuclear Instruments and Methods in Physics. Research B , 461 - 465
    2. 2)
      • J.H. Marsh . Quantum well intermixing. Semicond. Sci. Technol. , 1136 - 1155
    3. 3)
      • S. Sudo , H. Onishi , Y. Nakano , Y. Shimogaki , K. Tada , M.J. Mondry , L.A. Coldren . Impurity-free disordering of InGaAs/InGaAlAs quantum well on InP by dielectricthin cap films and characterization of its in-plane spatial resolution. Jpn. J. Appl. Phys. , 1276 - 1279
    4. 4)
      • A. Larsson , P.A. Andrekson , S.T. Eng , A. Yariv . Tunable superlattice p-i-n photodetectors : characteristics, theory,andapplications. IEEE J. Quantum Electron. , 5 , 787 - 801
    5. 5)
      • I.J. Pape , P.Li. Kam Wa , J.P.R. David , P.A. Claxton , P.N. Robson , . Sykes . Diffusion-induced disordering of Ga0.47In0.53As/InPmultiple quantumwells with zinc. Electron. Lett. , 15 , 910 - 911
    6. 6)
      • J.D. Ralston , S. O'Brien , G.W. Wick , L.F. Eastman . Room-temperature exciton transitions in partially intermixed GaAs/AlGaAssuperlattices. Appl. Phys. Lett. , 18 , 1511 - 1513
    7. 7)
      • Y. Suzuki , H. Iwamura , T. Miyazawa , O. Mikami . Polarization mode selective channel waveguides in anInGaAs/InP disordered superlattice. Appl. Phys. Lett. , 26 , 2745 - 2747
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19970761
Loading

Related content

content/journals/10.1049/el_19970761
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading