40 Gbit/s transmission over 406 km of NDSF using mid-span spectral inversion by four-wave-mixing in a 2 mm long semiconductor optical amplifier
40 Gbit/s transmission over 406 km of NDSF using mid-span spectral inversion by four-wave-mixing in a 2 mm long semiconductor optical amplifier
- Author(s): D.D. Marcenac ; D. Nesset ; A.E. Kelly ; M. Brierley ; A.D. Ellis ; D.G. Moodie ; C.W. Ford
- DOI: 10.1049/el:19970583
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): D.D. Marcenac 1 ; D. Nesset 1 ; A.E. Kelly 1 ; M. Brierley 1 ; A.D. Ellis 1 ; D.G. Moodie 1 ; C.W. Ford 1
-
-
View affiliations
-
Affiliations:
1: BT Laboratories, Ipswich, United Kingdom
-
Affiliations:
1: BT Laboratories, Ipswich, United Kingdom
- Source:
Volume 33, Issue 10,
8 May 1997,
p.
879 – 880
DOI: 10.1049/el:19970583 , Print ISSN 0013-5194, Online ISSN 1350-911X
The transmission of a 4 × 10 Gbit/s OTDM data sequence is demonstrated for the first time over 406 km of non-dispersion shifted fibre. Four wave mixing in a 2 mm long semiconductor optical amplifier was used to compensate for dispersion via mid-span spectral inversion. A record 45 dB signal-to-noise ratio in a 0.1 nm bandwidth was obtained for the spectrally inverted signal.
Inspec keywords: optical fibre dispersion; optical fibre communication; time division multiplexing; semiconductor lasers; multiwave mixing; digital communication
Other keywords:
Subjects: Semiconductor lasers; Photonic switching systems; Optical communication; Fibre optics; Nonlinear optics and devices
References
-
-
1)
- Dong, L., Cole, M.J., Ellis, A.D., Durkin, M., Ibsen, M., Gusmeroli, V., Laming, R.I.: `40 Gbit/s 1.55µm transmission over 109 km of non-dispersion shiftedfibre with long continuously chirped fibre gratings', OFC'97, 1997, Dallas, postdeadline paper PD6-1.
-
2)
- R. Ludwig , W. Pieper , H.G. Weber , D. Breuer , K. Petermann , F. Küppers , A. Mattheus . Unrepeatered 40 Gbit/s RZ single channel transmission over 150 km ofstandard fibre at 1.55µm. Electron. Lett. , 1 , 76 - 77
-
3)
- A. D'Ottavi , F. Martelli , P. Spano , A. Mecozzi , S. Scotti , R. Dall'Ara , J. Eckner , G. Guekos . Very high efficiency four-wave mixing in a single semiconductor travellingwave optical amplifier. Appl. Phys. Lett. , 2186 - 2188
-
4)
- W. Pieper , C. Kurtzke , R. Schnabel , D. Breuer , R. Ludwig , K. Petermann , H.G. Weber . Nonlinearity-insensitive standard fibre transmission based on optical-phaseconjugation in a semiconductor-laser amplifier. Electron. Lett. , 9 , 724 - 726
-
5)
- Ludwig, R., Schnabel, R., Weber, H.G., Wiesenfeld, J.: `Four wave mixing and asymmetric nonlinear gain in a semiconductor-laseramplifier', CThF1, Tech. Dig. CLEO'95, 1995, Baltimore.
-
6)
- A.D. Ellis , M.C. Tatham , D.A.O. Davies , D. Nesset , D.G. Moodie , G. Sherlock . 40 Gbit/s transmission over 202 km of standard fibre using midspan spectralinversion. Electron. Lett. , 4 , 299 - 301
-
7)
- Vaa, M., Mikkelsen, B., Jepsen, K.S., Stubkjaer, K.E., Doussiere, P., Pommerau, F., Goldstein, L., Ngo, R., Goix, M., Edvold, B.: `Cascaded semiconductor optical phase conjugators for dispersion accomodationin standard fibre based all-optical OTDM networks', SaC4-1, Tech. Dig. Optical Amplifiers and Their Applications 1996, 1996, OSA, Monterey, California.
-
8)
- Ellis, A.D.: `A comparison of WDM and OTDM systems for high capacity optical fibretransmission', IEE Colloquium on High Speed and Long Distance Optical Transmission, 1996, IEE, London, UK, Birmingham, UK, Ref. No. 1996/091.
-
9)
- A. Mecozzi . Analytical theory of four-wave mixing in semiconductor amplifiers. Opt. Lett. , 12 , 892 - 894
-
10)
- D. Nesset , D.D. Marcenac , A.E. Kelly . Improved system performance of wavelength conversion via four-wave mixingin a tandem semiconductor optical amplifier configuration. Electron. Lett. , 2 , 148 - 149
-
1)

Related content
