http://iet.metastore.ingenta.com
1887

Simple 4D chaotic oscillator

Simple 4D chaotic oscillator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An extremely simple 4-D chaotic oscillator is presented. It contains a single opamp, two LC circuits and a diode used as a nonlinear device. The chaotic oscillations have been characterised using the correlation dimension of the strange attractor, the Lyapunov exponents and the Lyapunov dimension. The dimensions are found to be >3.

References

    1. 1)
      • Special issue on chaotic systems. Proc. IEEE , 8
    2. 2)
      • Special issue onchaos in nonlinear electronic circuits. IEEE Trans. Circuits Syst.
    3. 3)
      • A. Namajūnas , A. Tamaševičius . A technique for measuringfractal dimensions from time series on a real time scale. Phys. D , 482 - 488
    4. 4)
      • A. Namajūnas , A. Tamaševičius . Modified Wien-bridge oscillatorfor chaos. Electron. Lett. , 5 , 335 - 336
    5. 5)
      • Ö. Morgül . Inductorless realisation of Chua oscillator. Electron. Lett. , 17 , 1403 - 1404
    6. 6)
      • Ö. Morgül . Wien bridge based RC chaos generator. Electron. Lett. , 24 , 2058 - 2059
    7. 7)
      • T. Matsumoto , L.O. Chua , K. Kobayashi . Hyperchaos: laboratory experiment and numerical confirmation. IEEE Trans. Circuits Syst. , 11 , 1143 - 1147
    8. 8)
      • T.L. Carroll , L.M. Pecora . A circuit for studying thesynchronization of chaotic systems. Int. J. Bifurcation Chaos , 3 , 659 - 667
    9. 9)
      • A. Namajūnas , A. Tamaševičius , K. Pyragas . An electronicanalog of the Mackey-Glass system. Phys. Lett. A , 1 , 42 - 46
    10. 10)
      • P. Grassberger , I. Procaccia . Measuring the strangeness ofstrange attractors. Phys. D , 189 - 208
    11. 11)
      • J.-P. Eckmann , D. Ruelle . Ergodic theory of chaos and strangeattractors. Rev. Mod. Phys. , 3 , 617 - 656
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19960630
Loading

Related content

content/journals/10.1049/el_19960630
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address