Efficient 4.2 µm light emitting diodes for detecting CO2 at room temperature

Access Full Text

Efficient 4.2 µm light emitting diodes for detecting CO2 at room temperature

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

InAs0.91Sb0.09 light emitting diodes (LEDs) were grown on p-type GaSb substrates using liquid phase epitaxy (LPE). These devices exhibit efficient infrared emission at 4.2 µm and can be used to fabricate infrared carbon dioxide (CO2) gas sensors for the cost effective detection and monitoring of CO2 gas in various applications.

Inspec keywords: gallium compounds; gas sensors; III-V semiconductors; liquid phase epitaxial growth; carbon compounds; light emitting diodes; semiconductor epitaxial layers; semiconductor growth; indium compounds

Other keywords: InAs0.91Sb0.09-GaSb; liquid phase epitaxy; gas monitoring; infrared emission; cost effective detection; CO2; gas sensors; 4.2 micrometre; light emitting diodes

Subjects: Chemical variables measurement; Epitaxial growth; Light emitting diodes; Chemical sensors; II-VI and III-V semiconductors

References

    1. 1)
      • W. Dobbelaere , J. De Boeck , G. Borghs . Growth and characterisation of InAs1-xSbx(0 < x < 1) on GaAs and on GaAs-coated Si by molecular-beam epitaxy. Appl. Phys. Lett.
    2. 2)
      • Y. Mao , A. Krier . Uncooled 4.2 m light emitting diodes based on InAs0.91Sb0.09/GaSbgrown by LPE. Opt. Mater.
    3. 3)
      • Y. Mao , A. Krier . Energy-band offsets and electroluminescence in n- InAs1-xSbx/N-GaSbheterojunctions. J. Electron. Mater.
    4. 4)
      • S. Elies , A. Krier , I.R. Cleverley , K. Singer . Photoluminescence of MBE-grown InAs1-xSbxlattice matched to GaSb. J. Phys. D: Appl. Phys.
    5. 5)
      • J.L. Zyskind , A.K. Srivastava , J.C. DeWinter , M.A. Pollack , J.W. Sulhoff . Liquid-phase-epitaxial InAsySb1-yon GaSb substrates using GaInAsSb buffer layers:growth, characterisation, and application to mid-IR photodiodes. J. Appl. Phys.
    6. 6)
      • T.Y. Seong , A.G. Morman , J.L. Hutchison , I.T. Ferguson , G.R. Booker , R.A. Stradling , B.A. Joyce . Phase separation and associated detects in MBE InAsySb1-yepitaxial layers. Inst. Phys. Conf. Ser.
    7. 7)
      • S.A. Bondar , V.N. Vigdorovich , G.P. Furmanov , S.G. Shutov . Study of the characteristics of the growth of epitaxial InAsySb1-y/GaSband InAsySb1-y/InAs heterostructures. Sov. Phys. Tech. Phys.
    8. 8)
      • J.R. Sketon , J.R. Knight . Liquid-phase epitaxy of In(As, Sb) on GaSb substrates using antimony-richmelts. Solid-State Electron.
    9. 9)
      • A. Krier , Y. Mao . Electrical transport properties and photoluminescence of lattice-matchedInAs0.9Sb0.9 on GaSb grown by liquid-phase epitaxy. Semicond. Sci. Technol.
    10. 10)
      • N.P. Esina , N.V. Zotova , I.I. Markov , B.A. Mateev , A.A. Rogachev , N.M. Stus , G.N. Talalakin . Gas analyser based on semiconducting elements. J. Appl. Spectrosc.
    11. 11)
      • J. De Boeck , W. Dobbelaere , J. Vanhellement , R. Martens , G. Borghs . Growth and structural characterisation of embedded InAsSb on GaAs-coatedpatterned silicon by molecular-beam epitaxy. Appl. Phys. Lett.
    12. 12)
      • Y. Mao , A. Krier . Liquid phase epitaxial growth and photoluminescence of InAsSb grown onGaSb substrates from antimony solution. J. Crystal Growth
    13. 13)
      • A.K. Srivastava , J.L. Zyskind . Electrical characteristics of InAsSb/GaSb heterojunctions. Appl. Phys. Lett.
    14. 14)
      • Z.M. Fang , K.Y. Ma , D.H. Jaw , R.M. Cohen , G.B. Stringfellow . Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vaporphase epitaxy. J. Appl. Phys.
    15. 15)
      • M.Y. Yen , R. People , K.W. Wecht , A.Y. Cho . Long-wavelength photoluminescence of InAs1-xSbx(1 < x < 1) grown by molecular beam epitaxy on (100) InAs. Appl. Phys. Lett.
    16. 16)
      • Y. Mao , A. Krier . InAsSb p-n junction light emitting diodes grown by liquid phase epitaxy. J. Phys. Chem. Solids
    17. 17)
      • H.Q. Le , G.W. Turner , S.J. Eglash , H.K. Choi , D.A. Coppeta . High-power diode-laser-pumped InAsSb/GaSb and GaInAsSb/GaSb lasers emittingfrom 3 to 4 m. Appl. Phys. Lett.
    18. 18)
      • W. Dobbelaere , J. De Boeck , C. Bruynseraede , R. Mertens , G. Borghs . InAsSb light emitting diodes and their application to infrared gas sensors. Electron. Lett.
    19. 19)
      • H. Inaba , T. Kobayashi , M. Hirama , M. Hamza . Optical-fibre network system for air-pollution monitoring over a widearea by optical absorption method. Electron. Lett.
    20. 20)
      • H. Mani , A. Joullie , J. Bhan , C. Schiller , J. Primot . The influence of supercooling on the liquid phase epitaxial growth ofInAs1-xSbx on (100) GaSb substrates. J. Elect. Mat.
    21. 21)
      • D.T. Cheung , A.M. Andrews , E.R. Gertner , G.M. Williams , J.E. Clarke , J.G. Pasko , J.T. Longo . Backside-illuminated InAs1-xSbx-InAsnarrow-band photodetectors. Appl. Phys. Lett.
    22. 22)
      • M.Y. Yen , R. People , K.W. Wecht . Long wavelength (3–5 and 8–12 µm) photoluminescence ofInAs1-xSbx grown on (100) GaAs by molecular-beamepitaxy. J. Appl. Phys.
    23. 23)
      • W.M. Coderre , J.C. Woolly . Conduction bands of GaxIn1- xAs andInAsxSb1- x alloys. Can. J. Phys.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19960275
Loading

Related content

content/journals/10.1049/el_19960275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading