Floating GNIC/GNII configuration realised with only a single OMA

Access Full Text

Floating GNIC/GNII configuration realised with only a single OMA

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In contrast to the previously known circuits which require two to four op-amps, current conveyors (CC) or operational mirrored amplifiers (OMAs) to realise a floating negative impedance converter, the Letter presents a configuration for realising a floating generalised negative impedance converter/inverter (GNIC/GNII) which employs no more than a single OMA along with a minimum of three passive components (without requiring any passive-component-matching). An application example is demonstrated. The workability of the proposed structures has been confirmed by SPICE simulations.

Inspec keywords: operational amplifiers; invertors; negative impedance convertors

Other keywords: floating GNIC/GNII configuration; generalised NIC; SPICE simulations; active circuits; operational mirrored amplifier; floating negative impedance converter; generalised negative impedance invertor

Subjects: Active filters and other active networks; Convertors

References

    1. 1)
      • R. Senani . Realisation of linear voltage-controlled-resistance in floating form. Electron. Lett. , 23 , 1909 - 1911
    2. 2)
      • C. Toumazou , F.J. Lidgey , D.G. Haigh . (1990) Analog IC design: The current mode approach.
    3. 3)
      • B. Wilson . Recent developments in current conveyors and current mode circuits. IEE Proc. G , 2 , 63 - 77
    4. 4)
      • R. Nandi . Precise realisation of an insensitive floating negative admittance converter. Electron. Lett. , 15 , 775 - 777
    5. 5)
      • R. Senani , J. Malhotra . Minimal realisations of a class of operational-mirrored-amplifier-basedfloating impedances. Electron. Lett. , 14 , 1113 - 1114
    6. 6)
      • A.N. Paul , A.N. Dey , D. Patranabis . A floating NIC without constraints and its applications. IEEE Trans. , 3 , 181 - 183
    7. 7)
      • W. Surakampontorn , P. Thitimajshima . Integrable electronically tunable current conveyors. IEE Proc. G , 2 , 71 - 77
    8. 8)
      • R. Senani , D.R. Bhaskar . Realisation of voltage controlled impedances. IEEE Trans. , 9 , 1081 - 1086
    9. 9)
      • J. Malhotra , R. Senani . Class of floating generalised positive/negative emmitance converters/invertersrealised withoperational mirrored amplifiers. Electron. Lett. , 1 , 3 - 5
    10. 10)
      • R. Senani , D.R. Bhaskar . A versatile voltage-controlled impedance configuration. IEE Proc. G , 5 , 414 - 416
    11. 11)
      • G. Normand . Floating impedance realisation using a dual operational mirrored amplifier. Electron. Lett. , 10 , 521 - 522
    12. 12)
      • A. Antoniou . Floating negative impedance converter. IEEE Trans. , 209 - 212
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19950287
Loading

Related content

content/journals/10.1049/el_19950287
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading