http://iet.metastore.ingenta.com
1887

Efficient 3.3 µm light emitting diodes for detecting methane gas at room temperature

Efficient 3.3 µm light emitting diodes for detecting methane gas at room temperature

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In0.97Ga0.03As light emitting diodes were grown on p-type InAs substrates by liquid phase epitaxy (LPE). These devices exhibit efficient infrared emission at 3.3 µm and can be used to fabricate infrared methane gas sensors for the cost-effective detection and monitoring of methane gas in various applications.

References

    1. 1)
      • P. Berger , K. Chang . Role of strain and growth conditions on the growth front profile of InxGa1-xAson GaAs during the pseudomorphic growth regime. Appl. Phys. Lett. , 684 - 686
    2. 2)
      • D. Radulescu , W. Schaff . Influence of substrate temperature and InAs mole fraction on the incorporationof indium during molecular-beam epitaxial growth of InGaAs single quantum wells on GaAs. J. Vac. Sci. Technol. , 111 - 115
    3. 3)
      • S. Akiba , K. Sakai . In0.53Ga0.47As/In1-xGaxAsyP1-ydouble heterostructure lasers with emission wavelength of 1.67 µm at room temperature. Jpn. J. Appl. Phys. , 1899 - 1900
    4. 4)
      • T. Pearsall , B. Miller . Efficient lattice-matched double-heterostructure LED's at 1.1 µm fromGaxIn1-xAsyP1-y. Appl. Phys. Lett. , 499 - 501
    5. 5)
      • K. Bachmann , J. Shay . An InGaAs detector for the 1.0–1.7 µm wavelength range. Appl. Phys. Lett. , 446 - 448
    6. 6)
      • O. Madelung . (1978) Data Science and Technology.
    7. 7)
      • Gerritsen, H.: `Use of room temperature diodes in monitoring specific gases in air, particularly methane and carbon monoxide', Final Report, 1974, Contract No. 90101740, Grant No. G010740, NTIS No. PB-245-912/AS.
    8. 8)
      • M. Astles , O. Dosser . Substrate instability during the LPE growth of (Ga,In)As alloys on InAs substrates. J. Crystal Growth , 485 - 492
    9. 9)
      • B. Matveev , V. Petrov . Features of growth and luminescence properties of epitaxial heterojunctionstructures based onIn1-xGaAs and InAs1-xPx (x < 0.2) solid solutions. Izv. Akad. Nauk. SSSR, Neorg. Mater. , 482 - 486
    10. 10)
      • Zotova, N., Karandashev, S.: `Optoelectronic sensors based on narrow band A', SPIE-Chemical, Biological and Environmental Fiber Sensors III, 1991, 1587, p. 334–345.
    11. 11)
      • M. Parry , A. Krier . Liquid phase epitaxial growth and photoluminescence of Mn-doped InGaAswith InAs-enriched composition. J. Crystal Growth , 238 - 246
    12. 12)
      • M. Parry , A. Krier . Interface recombination and photoluminescence efficiency of thick (>3 µm) LPE InGaAs with InAs-enriched composition. Thin Solid Films
    13. 13)
      • L. Rothman , R. Gamache . The Hitran molecular database: Editions of 1991 and 1992. J. Quantum Radiation Transfer , 469 - 507
    14. 14)
      • T. Moss . (1981) Handbook on semiconductors.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19941360
Loading

Related content

content/journals/10.1049/el_19941360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address