High performance three-terminal δ-doped GaAs negative resistance field-effect transistor based on real-space transfer

Access Full Text

High performance three-terminal δ-doped GaAs negative resistance field-effect transistor based on real-space transfer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A three-terminal δ-doped GaAs real-space transfer transistor has been demonstrated by low-pressure metal organic chemical vapour deposition for the first time. The device has the advantages of: ease of growth and fabrication, large and adjustable peak-to-valley current ratio even at room temperature, extremely sharp charge injection, high transconductance, and high-power handling capability.

Inspec keywords: negative resistance; hot electron transistors; semiconductor growth; gallium arsenide; field effect transistors; III-V semiconductors; chemical vapour deposition; semiconductor doping

Other keywords: power handling; low-pressure metal organic chemical vapour deposition; transconductance; GaAs; fabrication; peak-to-valley current ratio; real-space transfer; growth; charge injection; three-terminal δ-doped GaAs negative resistance field-effect transistor

Subjects: Semiconductor doping; Other field effect devices; Chemical vapour deposition

References

    1. 1)
      • T.K. Higman , M.S. Hagedorn , J. Chen . Observation of light emission from real-space transfer devices. Appl. Phys. Lett. , 1342 - 1344
    2. 2)
      • K. Hess , H. Morkoc , H. Shichijo , B.G. Streetman . Negative differential resistance through real-space electron transfer. Appl. Phys. Lett. , 469 - 471
    3. 3)
      • J.B. Gunn . Microwave oscillation of current in III-V semiconductors. Solid-State Commun. , 88 - 91
    4. 4)
      • J.T. Lai , J.Y. Lee . AlGaAs/GaAs charge injection transistor/negative resistance field-effecttransistor fabricated with shallow Pd/Ge ohmic contacts. Appl. Phys. Lett. , 306 - 308
    5. 5)
      • A. Kastalsky , R.A. Kiehl , S. Luryi , A.C. Gossard , R. Hendel . Microwave generation in NERFET. IEEE Electron Device Lett. , 321 - 323
    6. 6)
      • S. Luryi , P.M. Mensz , M.R. Pinto , P.A. Garbinski , A.Y. Cho , D.L. Sivco . Charge injection logic. Appl. Phys. Lett. , 1787 - 1789
    7. 7)
      • S. Luryi , A. Kastalsky , A.C. Gossard , R. Hendel . Hot-electron memory effect in double-layered heterostructures. Appl. Phys. Lett. , 1294 - 1296
    8. 8)
      • M. Mastrapasqua , S. Luryi , F. Capasso , A.L. Hutchinson , D.L. Sivco , A.Y. Cho . Light-emitting transistor based on real-transfer:electrical and optical properties. IEEE Trans. Electron Devices , 250 - 258
    9. 9)
      • P.M. Mensz , P.A. Garbinski , A.Y. Cho , D.L. Sivco , S. Luryi . High transconductance and large peak-to-valley ratio of negative differentialconductance in three-terminal InGaAs/InAlAs real-space transfer devices. Appl. Phys. Lett. , 2558 - 2560
    10. 10)
      • E.F. Schubert , A. Fischer , K. Ploog . The delta-doped field-effect transistor (δFET). IEEE Trans. Electron Devices , 625 - 632
    11. 11)
      • L. Esaki . New phenomenon in Ge p-n junction. IEEE Trans. , 644 - 647
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19941028
Loading

Related content

content/journals/10.1049/el_19941028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading