Distinction between multimoded and singlemoded self-pulsations in DFB lasers

Access Full Text

Distinction between multimoded and singlemoded self-pulsations in DFB lasers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

DFB lasers with split contacts are shown, by large signal dynamic modelling, to self-pulsate at gigabit frequencies. Two different self-pulsation schemes are discussed: where the laser switches between the higher and lower stop band modes, and where the laser pulsates around a single mode. The second scheme can yield self-pulsation frequencies beyond 20 GHz. Comparisons are made with experimental results.

Inspec keywords: laser modes; distributed feedback lasers; semiconductor lasers; laser frequency stability

Other keywords: large signal dynamic modelling; multimoded self-pulsations; signal travelling wave model; singlemoded self-pulsations; DFB lasers; Brag stopbands; stop band modes; split contacts

Subjects: Lasing action in semiconductors; Design of specific laser systems; Semiconductor lasers

References

    1. 1)
      • H. Olesen , B. Tromborg , H.E. Lassen , X. Pan . Mode instability and linewidth rebroadening in DFB lasers. Electron. Lett. , 5 , 444 - 446
    2. 2)
      • U. Feiste , D.J. As , A. Ehrhardt . 18 GHz all-optical frequency locking and clock recovery using a self-pulsatingtwo-section DFB-laser. IEEE Photonics Technol. Lett. , 1 , 106 - 108
    3. 3)
      • M. Möhrle , U. Feiste , J. Hörer , R. Molt , B. Sartorius . Gigahertz self-pulsation in 1.5 µm wavelength multisection DFBlasers. IEEE Photonics Technol. Lett. , 9 , 976 - 978
    4. 4)
      • A.J. Lowery , A. Keating , C.N. Murtonen . Modelling the static and dynamic behaviour of quarter-wave-shifted DFBlasers. IEEE J. Quantum Electron. , 9 , 1874 - 1883
    5. 5)
      • U. Bandelow , H.J. Wünsche , H. Wenzel . Theory of selfpulsations in two section DFB lasers. IEEE Photonics Technol. Lett. , 10 , 1176 - 1178
    6. 6)
      • P. Phelan , D. McDonald , A. Egan , J. Hegarty , R. O'Dowd , G. Farrell , S. Lindgren . Comparison of self-pulsation in multisection lasers with distributedfeedback and intracavity saturable absorbers. IEE Proc. J , 2 , 114 - 118
    7. 7)
      • C.F. Tsang , D.D. Marcenac , J.E. Carroll , L.M. Zhang . Comparison between 'time domain model(TDM)’ and ‘power matrixmethod (PMM)’ in modelling large signal responses of DFB lasers. IEE Proc. Optoelectron. , 2 , 89 - 96
    8. 8)
      • A.J. Lowery . Dynamics of SHB-induced mode instabilities in uniform DFB semiconductorlasers. Electron. Lett. , 21 , 1852 - 1854
    9. 9)
      • R. Schatz . Longitudinal spatial instability in symmetric semiconductor lasers dueto spatial hole burning. IEEE J. Quantum Electron. , 6 , 1443 - 1449
    10. 10)
      • P. Barnsley . All-optical clock extraction using two-contact devices. IEE Proc. J , 5 , 325 - 336
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19940797
Loading

Related content

content/journals/10.1049/el_19940797
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading